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Abstract
The quantum mechanical two-body problem with a central interaction on the
sphere Sn is considered. Using recent results in representation theory, an
ordinary differential equation for some energy levels is found. For several
interactive potentials these energy levels are calculated in explicit form.
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1. Introduction

The history of mechanics on constant curvature spaces began more than one and a half centuries
ago. The analogue of Newton (or Coulomb) force for the hyperbolic space H3 had already
been proposed by the founders of the hyperbolic geometry Lobachevski (between 1835 and
1838) [1] and Bolyai (between 1848 and 1851) [2] as the value F(ρ), which is inverse to the
area of the sphere in H3 of radius ρ with an attractive body in the centre.

The analytical expression for the Newtonian potential in the space H3 was written in
1870 by Schering [3] (see also his paper [4] of 1873), without any motivation or references to
Lobachevski and Bolyai.

In 1873, Lipschitz considered a one-body motion in a central potential on the sphere S2

[5]. He knew that the central potential Vc satisfies the Laplace equation on S3. However, for
some reason he preferred to consider another central potential V (ρ) ∼ sin−1(ρ/R), where ρ

is the distance from the centre and R is the curvature radius. He calculated the general solution
of this problem through elliptic functions.

In 1885, Killing found the generalization of all three Kepler laws for the sphere S3 [6].
He considered the attractive force as an inverse area of a two-dimensional sphere in S3 as
Lobachevski and Bolyai did before. In the following year, these results were also published
by Neumann in [7]. Their expansion onto the hyperbolic case was carried out in the Liebmann
paper [8] in 1902 and later in 1905 in his book on non-Euclidean geometry [9]. Note that he
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started from ellipses in S3 or H3 and derived a potential in such a way that the first Kepler law
would be valid. He also derived the generalization of the oscillator potential for these spaces
from the requirement that a particle motion occurs along an ellipse with its centre coinciding
with the centre of the potential.

Also in the paper [6], Killing proved the variable separation in the two-centre Kepler
problem on the sphere Sn, which implies the integrability of this problem.

The well-known Bertrand theorem [10] states that up to an arbitrary factor there are only
two central potentials in Euclidean space that make all bounded trajectories of a one-particle
problem closed. In spaces S2, H2 there are also only two potentials Vc and Vo with this
property. It was proved by Liebmann in 1903 [11], see also [9].

One can consider the classical mechanics in spaces of constant curvature as a predecessor
of special and general relativity. After the rise of these theories, the above papers of Schering,
Killing and Liebmann were almost completely forgotten. Note that the description of a particle
motion in central potentials in spaces S3 and H3 was shortened in the second and the third
editions of the Liebmann book [9] with regard to the first edition in favour of special relativity.

Similar models attracted attention later from the point of view of quantum mechanics and
the theory of integrable dynamical systems. This led to the rediscovery of the results described
above in many papers. Note however that almost forgotten results of Schering, Killing and
Liebmann were described in the survey [12].

The quantum mechanical spectral problem on the sphere S3 for potential Vc (Coulomb
problem) was solved by Schrödinger in 1940 by the factorization (ladder) method, invented
by himself [13]. Stevenson in 1941 solved the same problem using more traditional analysis
of the hypergeometric differential equation [14] (see also Infeld result in 1941 [15]). Infeld
and Schild in 1945 solved a similar problem in the space H3 [16] (see also [17]).

The connection of the Runge–Lenz operator for the quantum Kepler problem in S3 with
the Schrödinger ladder method was discussed by Barut and Wilson in [18]. In [19], Barut,
Inomata and Junker solved the Kepler problem in S3 and H3 using functional integration. In
papers [20, 21], Otchik considered the one-particle quantum two-centre Coulomb problem
in S3 and found a coordinate system admitting the variable separation. The corresponding
ordinary differential equations are those of Heun. In [22–26], there was developed an algebraic
approach to one-particle problems for potentials Vc and Vo in spaces Sn, Hn. Transformations
between the Coulomb–Kepler and oscillator problems existing in the Euclidean space were
generalized for the sphere in [27]. In [28], Bogush, Kurochkin and Otchik considered Coulomb
scattering in the space H3.

The two-body problem with a central interaction in constant curvature spaces Sn and
Hn considerably differs from its Euclidean analogue. The variable separation for the latter
problem is trivial, while for the former one no central potentials are known that admit a variable
separation.

The classical two-body problem with a central interaction in constant curvature spaces
was considered for the first time in [29]. Its Hamiltonian reduction to the system with two
degrees of freedom was carried out by explicit coordinate calculations. For some potentials,
there was proved the solvability of the reduced problem for an infinite period of time.

In [30], the self-adjointness of the quantum two-body Hamiltonian in spaces S2 and
H2 was studied. Also, some infinite energy series for this Hamiltonian with some central
potentials on S2 were found there in explicit form.

Simply connected constant curvature spheres Sn and hyperbolic spaces Hn are
representatives of the class of two-point homogeneous Riemannian spaces (TPHRS). Such
spaces are characterized by the property that any pair of points can be transformed by means
of an appropriate isometry to any other pair of points with the same distance between them.
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Equivalently, these spaces are characterized by the property that the natural action of the
isometry group on the unit sphere bundle over them is transitive. The classification of TPHRS
can be found in [31].

For a smooth manifold M endowed with a left action of a Lie group G, denote by
Diff(M) ≡ DiffG(M) the algebra of G-invariant differential operators on M with smooth
coefficients. For a Riemannian manifold M let MS be the unit sphere bundle over M. Let Q
be an arbitrary TPHRS, endowed with the action of the identity component of the isometry
group for Q.

In [32], there was found a polynomial expression for the quantum two-body Hamiltonian H
on Q through a radial differential operator and generators of the algebra Diff(QS). Coefficients
of this polynomial depend only on the distance between particles.

Algebras Diff(QS) are noncommutative. A full set of their generators and corresponding
relations1 was found in [33].

Let A be a set of Diff(QS) generators presented in the expression for the Hamiltonian
H. Every common eigenfunction of operators from A generates a separate spectral ordinary
differential equation for the two-body quantum mechanical problem on TPHRS. The search for
such a common eigenfunction is not an easy problem. In low dimensions for Q = S2,Q = S3,
this problem was solved in [30] and [34] using an explicit description of SO(3) and SO(4)

irreducible representations. The present paper deals with this problem for the general spherical
case Q = Sn. Progress is made using the results in representations theory of the algebras
so(n, C) in [35] and [36].

The paper is organized as follows. Sections 2–4 are of a preparatory character.
Sections 2 and 3 contain basic facts on invariant differential operators on homogeneous
spaces and regular representations of compact Lie groups, respectively. In section 4, there is a
description of the quantum two-body Hamiltonian on the sphere Sn through a radial differential
operator and generators Di, i = 0, 1, 2, 3, of the algebra Diff

(
Sn

S

)
.

Sections 5 and 6 form the main part of the paper. In section 5, we calculate actions
of operators Di, i = 0, 1, 2, 3, in a corresponding functional space and find all common
eigenvectors ψD for operators D2

0,D1,D2 and optionally D3. Using these eigenvectors, we
derive in section 6 a separate ordinary differential equation of the second order for a radial
part of a two-body eigenfunctions. For Coulomb and oscillator potentials this differential
equation is Fuchsian and we consider its reducibility to the hypergeometric one using the
rational change of an independent variable. This reduction is possible for some eigenvectors
ψD that lead to an explicit form of some infinite energy level series for the two-body problem
with Coulomb and oscillator potentials.

Necessary information concerning complex orthogonal Lie algebras, self-adjoint
Schrödinger operators on Riemannian spaces and Fuchsian differential equations is collected
in appendices A–C.

2. Invariant differential operators on homogeneous spaces

Here we shall briefly describe the construction of invariant differential operators on
homogeneous spaces [37].

Let G be a Lie group of dimension N and K be its subgroup of dimension N − �. Denote
the corresponding Lie algebras as g and k. Suppose that the algebra g admits the reductive
expansion

g = p ⊕ k, (1)

1 One relation for the quaternion projective space and its hyperbolic analogue was calculated only in leading terms.
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for a subspace p ⊂ g, i.e. AdKp ⊂ p. For a compact Lie group G such subspace p can always
be constructed using the invariant integration on G. Let (ej )

N
j=1 be a base in g such that (ej )

�
j=1

is a base in p.
Let S(p) be a symmetric algebra for the linear space p. The AdK -action on p is naturally

extended to the AdK -action on S(p). The main result of the general theory [37] is that
G-invariant differential operators on G/K are in one-to-one correspondence with the set
S(p)K of all AdK -invariant elements in S(p).

Let ı : p → S(p) be an inclusion, U(g) be the universal enveloping algebra for g and
λ : S(p) → U(g) be a linear symmetrization map, defined on monomials by the formula

λ
(
e∗
i1

· · · e∗
ik

) = 1

k!

∑
σ∈Sk

eiσ(1)
· · · eiσ(k)

, 1 � ij � �, 1 � j � k,

where e∗
ij

:= ı(eij ) and Sk is the full permutations group of k elements. Evidently,

λ : S(p)K → U(g)K,

where U(g)K is the set of all AdK -invariant elements in U(g)K .
Let P(e1, . . . , eN) be a polynomial depending on noncommutative elements. Denote by

ẽi the left invariant vector field on G, corresponding to the element ei ∈ g ∼= TeG :

ẽi |g = d

dt

∣∣∣∣
t=0

g exp(tei), g ∈ G.

Then, DP := P(ẽ1, . . . , ẽN ) is a left invariant differential operator on G.
Functions on the homogeneous space G/K are in one-to-one correspondence with

functions on the group G that are invariant w.r.t. right K-shifts. For P(e1, . . . , eN) ∈ U(g)K

the differential operator DP , acting on such functions, can be considered as a G-invariant
differential operator on the space G/K and every such operator can be uniquely represented
in the form

(λ(P0))(ẽ1, . . . , ẽ�)),

for some P0 ∈ S(p)K .

3. Regular representations of compact Lie groups

Let G be a compact connected Lie group and µ be a bi-invariant positive measure on G, unique
up to an arbitrary factor [38]. Let L2(G,µ) be a Hilbert space of measurable complex-valued
functions on G, square integrable w.r.t. the measure µ. Define two unitary left representations
of G in the space L2(G,µ). The left regular representation T l acts by the left shifts(

T l
qf
)
(g) = f (q−1g), q, g ∈ G, f ∈ L2(G,µ)

and the right regular representation T r acts by the right shifts(
T r

q f
)
(g) = f (gq), q, g ∈ G, f ∈ L2(G,µ).

Evidently, these representations are equivalent with the intertwining operator f (g) → f (g−1).
It is well known that these representations expand into direct sums of finite-dimensional
unitary irreducible representations (irreps). Each of these irreps is contained in T l or T r

with a multiplicity equal to its dimension and every linear irreducible representation of G is
equivalent to an irreps from this sum [39, 40].

Let T� be a full system of unitary irreps for G in spaces U�, � = 1, 2, . . . . Choose in every
U� an orthonormal base (e�,k)

d�

k=1, d� := dimC U�. Define matrix elements t i�,k of operators



The two-body quantum mechanical problem on spheres 4015

T r
q by the equation T r

q e�,k =: t i�,k(q)e�,i or equivalently by t i�,k(q) := 〈
e�,i , T

r
q e�,k

〉
U�

, q ∈ G.
Since

t i�,k(gq)e�,i = T r
g T r

q e�,k = t
j

�,i(g)t i�,k(q)e�,j , g, q ∈ G

one has

t i�,k(gq) = t i�,j (g)t
j

�,k(q). (2)

Therefore, the subspaceR�,i ⊂ L2(G,µ), spanned by functions
(
t i�,j (g)

)d�

j=1, is invariant under
operators T r

q and the representation T r |R�,i
is equivalent to T�. On the other hand, formula

(2) implies that the subspace L�,j ⊂ L2(G,µ), spanned by functions
(
t i�,j (g)

)d�

i=1, is invariant
under operators T l

q and the representation T l|L�,j
is again equivalent to T�. The functions(

t i�,j (g)
)d�

i,j=1, � = 1, 2, . . . , form an orthogonal base in the space L2(G,µ) [38–40] and

∥∥t i�,j∥∥2
L2(G,µ)

= µ(G)

d�

.

Thus, the space

T� :=
d�⊕

i=1

R�,i =
d�⊕

j=1

L�,j

is invariant under representations T r and T l . The representation T r intermixes spaces
L�,j of representations T l and vice versa the representation T l intermixes spaces R�,i of
representations T r . The space L2(G,µ) of representations T r and T l expands into irreps as
follows:

L2(G,µ) =
⊕

�

T� =
⊕

�

d�⊕
i=1

R�,i =
⊕

�

d�⊕
j=1

L�,j .

For a Lie subgroup K of the group G, the subspace L2(G,K,µ) ⊂ L2(G,µ), consisting of
functions invariant w.r.t. all right K-shifts on G, is invariant w.r.t. left G-shifts. Therefore,
there are only two possibilities:

L�,j ∩ L2(G,K,µ) = L�,j and L�,j ∩ L2(G,K,µ) = 0.

The consideration above implies the following proposition.

Proposition 1. Let

T̃� := T� ∩ L2(G,K,µ), R̃�,i := R�,i ∩ L2(G,K,µ), d̃� := dimC R̃�,i .

Evidently, the value d̃� does not depend on i = 1, . . . , d�. The representation T l|T̃�
is expanded

into the direct sum of equivalent irreps in spaces LK
�,k, k = 1, . . . , d̃�, which are among of

L�,j . On the other hand,

T̃� =
d�⊕

i=1

R̃�,i ,

where the spaces R̃�,i , i = 1, . . . , d�, are isomorphic to each other.
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4. Two-body Hamiltonian on the sphere Sn

Let Sn, n � 2, be the n-dimensional sphere, endowed with the standard metric g of a constant
sectional curvature R−2, R > 0 and

	 = 1√
γ

∂

∂xi

(√
γ gij ∂

∂xj

)
be the corresponding Laplace–Beltrami operator, expressed through local coordinates, where
γ := det‖gij‖. We start from the description of the two-body quantum Hamiltonian on Sn

found in [32, 41].
The configurations space for the two-body system on Sn is

Sn × Sn. (3)

The Hamiltonian for this system is

HV = H0 + V ≡ − 1

2m1
	1 − 1

2m2
	2 +V (ρ), (4)

where 	i , i = 1, 2, is the Laplace–Beltrami operator on the ith factor of (3) and ρ be
the distance between particles. It should be defined on some subspace Dom(H) dense in
L2 (Sn × Sn, χ × χ) to be a self-adjoint operator, where χ is the measure on Sn induced by
the metric. In local coordinates, χ has the form χ = √

γ dx1 ∧ · · · ∧ dxn. Note that the free
Hamiltonian H0 is the Laplace–Beltrami operator for the metric

g2 := m1π̃
∗
1 g + m2π̃

∗
2 g (5)

on (3), multiplied by −1/2, where π̃∗
i g is the pullback of the metric g with respect to the

projection on the ith factor.
Let G ∼= SO(n + 1) be the identity component of the isometry group for the sphere Sn.

One can consider SO(n + 1) in the standard way as

SO(n + 1) = (A ∈ GL(n + 1, R)|AAT = E, det A = 1),

where E is the matrix unit. The configuration space (3) is endowed with the diagonal G-action
and the differential operator (4) is G-invariant.

Let K ∼= SO(n − 1) be a subgroup in SO(n + 1) with elements of the form(
E2 0
0 A

)
, E2 =

(
1 0
0 1

)
, A ∈ SO(n − 1).

Up to a manifold of dimension n, consisting of antipodal points, the configuration space (3)
can be represented as the direct product

I × (G/K), (6)

where I = (0, πR) and the factor space G/K is G-homogeneous w.r.t. left shifts [32]. The
space G/K is isomorphic to the unit sphere bundle over Sn [33].

The Lie algebra g ∼= so(n+ 1), corresponding to the group G, consists of skew-symmetric
matrices. Let Ekj be the matrix of the size (n + 1) × (n + 1) with the unique nonzero element
equals 1, locating at the intersection of the kth row and the j th column. Choose the base for
the algebra g as


kj = Ekj − Ejk, 1 � k < j � n + 1.

The algebra g admits the reductive expansion (1), where the subspace p is spanned by elements


1k, 2 � k � n + 1, 
2k, 3 � k � n + 1.
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In the general case n � 4 generators of the commutative algebra S(p)K can be chosen
[33] as

−
∗
12,

n+1∑
k=3

(
∗
1k)

2,

n+1∑
k=3

(
∗
2k)

2, −
n+1∑
k=3


∗
1k


∗
2k.

In the case n = 3, there is the additional generator

�∗ = 
∗
13


∗
24 − 
∗

14

∗
23.

In the case n = 2, the group K is trivial and generators of S(p)K = S(p) are simply


∗
12, 
∗

13, 
∗
23.

In all cases, we shall consider elements

D0 = −
12, D1 =
n+1∑
k=3


2
1k, D2 =

n+1∑
k=3


2
2k, D3 = −1

2

n+1∑
k=3

{
1k, 
2k} (7)

from U(g) as invariant differential operators on the space G/K , where {·, ·} means an
anticommutator. The commutative relations for differential operators (7) are (see [33])

[D0,D1] = −2D3, [D0,D2] = 2D3, [D0,D3] = D1 − D2,

[D1,D2] = −2{D0,D3}, [D1,D3] = −{D0,D1} +
(n − 1)(n − 3)

2
D0,

[D2,D3] = {D0,D2} − (n − 1)(n − 3)

2
D0.

(8)

For n = 3, the additional operator

� := 1
2 ({
13, 
24} − {
14, 
23})

lies in the centre of the algebra DiffG(G/K).
Define a new coordinate r on the interval I by the equation

r = tan
( ρ

2R

)
, r ∈ R+ := (0,∞).

Results from [32, 33] imply the following theorem.

Theorem 1. The quantum two-body Hamiltonian on the sphere Sn can be considered as the
differential operator

H = − (1 + r2)n

8mR2rn−1

∂

∂r
◦
(

rn−1

(1 + r2)n−2

∂

∂r

)
− m1α

2 + m2β
2

2m1m2R2
D2

0

+
(m1α − m2β)(1 + r2)n

4m1m2R2rn−1

{
∂

∂r
,

rn−1D0

(1 + r2)n−1

}
− 1

2
(CD1 + AD2 + 2BD3) + V (r), (9)

on the space R+ × G, where

m := m1m2

m1 + m2
, (10)

a parameter α ∈ (0, 1) is arbitrary, β := 1 − α and

A = (1 + r2)2

4m1m2R2r2
(m1 cos2(2α arctan r) + m2 cos2(2β arctan r)),

B = (1 + r2)2

8m1m2R2r2
(m1 sin(4α arctan r) − m2 sin(4β arctan r)),

C = (1 + r2)2

4m1m2R2r2
(m1 sin2(2α arctan r) + m2 sin2(2β arctan r)).
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The domain for operator (9) is dense in the space L2(R+ ×G,K, η), consisting of all complex-
valued square integrable K-invariant functions on R+ × G, with respect to right K-shifts and
the measure

dη = rn−1 dr

(1 + r2)n
⊗ dµ ≡ dν ⊗ dµ,

where µ is a biinvariant measure on G, unique up to a constant factor.

In the following, we choose the parameter α in such a way that m1α − m2β = 0, i.e.,

α = m2

m1 + m2
, β = m1

m1 + m2
.

For such choice operator (9) becomes

H = − (1 + r2)n

8mR2rn−1

∂

∂r
◦
(

rn−1

(1 + r2)n−2

∂

∂r

)
− 1

2(m1 + m2)R2
D2

0

− 1

2
(CD1 + AD2 + 2BD3) + V (r). (11)

It is obvious that

L2(R+ × G,K, η) = L2(R+, ν) ⊗ L2(G,K,µ). (12)

Operators D2
0,D1,D2,D3 act on the second factor in (12). This action will be studied in the

following section.
Note that B ≡ 0 for m1 = m2. Let ψD ∈ L2(G,K,µ) be a common eigenfunctions for

operators D2
0,D1,D2 if m1 = m2 and also for D3 if m1 �= m2. Then the following stationary

Schrödinger equation

H(f (r)ψD) = Ef (r)ψD (13)

is equivalent to a spectral problem for an ordinary differential equation for a function f (r)

and an energy level E (in other words to a one-dimensional stationary Schrödinger equation).2

Proposition 2. Let ψD be a common eigenfunction for operators D2
0,D1,D2,D3 with

eigenvalues δ0, δ1, δ2 and δ3, respectively. Then,

1. δ1 = δ2 and δ3 = 0;
2. D0ψD is an eigenfunction for operators D2

0,D1,D2,D3 with the same eigenvalues
δ0, δ1, δ2 and δ3, respectively;

3. if D0ψD �∼ ψD , then D0ψD ± √
δ0ψD are eigenfunctions for operators D0,D1,D2,D3;

4. if D0ψD ∼ ψD , then either D0ψD = 0 or δ1 = δ2 = (n − 1)(n − 3)/4.

Proof. Relations [D0,D3] = D1 − D2 and [D1,D2] = −2{D0,D3} imply

[D0,D3]ψD = δ3D0ψD − D3D0ψD = (D1 − D2)ψD = (δ1 − δ2)ψD,

δ3D0ψD + D3D0ψD = {D0,D3}ψD = − 1
2 [D1,D2]ψD = 0. (14)

The last two equations lead to

2δ3D0ψD = (δ1 − δ2)ψD. (15)

If δ3 �= 0, then the last equation implies D0ψD ∼ ψD and the relation [D0,D1] = −2D3 gives
δ3ψD = D3ψD = − 1

2 [D0,D1]ψD = 0. Thus, δ3 = 0 and equation (15) implies δ1 = δ2 that
proves the first claim of the proposition.

2 Note that such eigenfunctions are very special elements of the space L2(G, K,µ) and they do not span it.
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Now from equation (14) one gets D3D0ψD = 0 and the first two relations (8) imply
D1D0ψD = D2D0ψD = δ1D0ψD . The relation D2

0D0ψD = δ0D0ψD is evident, which
completes the proof of the second claim.

The relation D2
0ψD = δ0ψD is equivalent to (D0 +

√
δ0 id)(D0 − √

δ0 id)ψD = 0. Now if
D0ψD �= √

δ0ψD , then ψ−
D := (D0 − √

δ0 id)ψD is an eigenfunction for the operator D0. The
function ψ−

D is also an eigenfunction for operators D1,D2,D3 due to the second claim. The
consideration for the function ψ+

D := (D0 +
√

δ0 id)ψD is completely similar. Thus, the third
claim is proved.

Assume now D0ψD = δ′
0ψD . Then, the last relation from (8) gives

2δ′
0δ2ψD = 1

2 (n − 1)(n − 3)δ′
0ψD.

It means either δ′
0 = 0 or δ1 = δ2 = (n − 1)(n − 3)/4, which proves the last claim. �

5. Action of operators D0, D1, D2, D3 in the space L2(G, K, µ)

Here, we use the notation of section 3 for G = SO(n + 1) and K = SO(n − 1). Below we
mean by the complexification gC of the Lie algebra g the following set

so(n + 1, C) = (A ∈ gl(n + 1, C) | A + AT = E). (16)

Operators Di are polynomial w.r.t. infinitesimal generators of right G-shifts. Therefore,
they conserve the spaces T̃� and generally intermix its direct summands LK

�,k, k = 1, . . . , d̃�,
with constant � and different k. On the other hand, they act in spaces R̃�,i and their action is
the same for constant � and different i = 1, . . . , d�.

From now we shall treat complex spaces R�,i as simple left modules over gC. Their
subspaces R̃�,i consist of elements annulled by the subalgebra kC ∼= so(n − 1, C) ⊂ gC.

The classification of such modules based on the notion of a dominant weight is well
known [46, 47] (see also appendices A and B for a brief description). In order to apply
this theory one should use the form of so(n + 1, C), described in appendix A and different
from (16). Besides, since Bk := so(2k + 1, C) and Dk := so(2k, C) are different series of
simple complex Lie algebras, we shall consider cases of odd and even n separately.

5.1. The case n = 2k

In this section, we shall use notation from appendix A.1. In particular, by Bk we mean the
set (A.1). First of all, we shall construct the isomorphism gC ∼= Bk in explicit form.

Let

J2k+1 =


1√
2
Ek 0 1√

2
Sk

0 1 0
i√
2
Sk 0 −i√

2
Ek

 ∈ GL(2k + 1, C),

where i is the complex unit. It is easily verified that

J2k+1S2k+1J
T
2k+1 = E2k+1.

Therefore, the equation AT S2k+1 + S2k+1A = 0 for A ∈ gl(2k + 1, C) is equivalent to the
equation BT + B = 0, where B := (J T

2k+1

)−1
AJT

2k+1. Thus, the map

B → J T
2k+1B

(
J T

2k+1

)−1
(17)

is the isomorphism between gC and Bk .



4020 A V Shchepetilov

Let

C =


0 α A− a A+

−α 0 B− b B+

−AT
− −BT

−
−a −b C ′

−AT
+ −BT

+

 ∈ g,

where
A− = (a−(k−1), . . . , a−1), A+ = (a1, . . . , ak−1), B− = (b−(k−1), . . . , b−1),

B+ = (b1, . . . , bk−1), ai, bi, a, b ∈ R, C ′ ∈ so(2k − 1).

Move the second row and the second column of the matrix C to the last positions. This gives
the matrix

C̃ =


0 A a A+ α

−AT
− −BT

−
−a C̃ ′ −b

−AT
+ −BT

+

−α B− b B+ 0

 ∈ so(2k + 1), C̃ ′ ∈ so(2k − 1).

The transformation (17) now gives for Ĉ := J T
2k+1C̃

(
J T

2k+1

)−1
the expression

Ĉ = 1

2


−2iα Z− − iZ+Sk−1

√
2z Z−Sk−1 + iZ+ 0

−Z
T

− − iSk−1Z
T

+ −ZT
− − iSk−1Z

T
+

−√
2z̄ Ĉ ′ −√

2z

−Sk−1Z
T

− + iZ
T

+ −Sk−1Z
T
− + iZT

+

0 Z− − iZ+Sk−1

√
2z̄ Z−Sk−1 + iZ+ 2iα

 ,

where Z− := A− + iB−, Z+ := A+ + iB+, z := a + ib, Ĉ ′ ∈ Bk−1. Let us identify Lie algebras
gC and Bk through the map C → Ĉ. Due to the definition of 
ij in section 4, one gets the
following formulae:


12 = iFkk, 
1,k+2 = 1√
2
(Fk0 − F0k), 
2,k+2 = − i√

2
(Fk0 + F0k),


1i = 1

2
(Fkj + Fk,−j + F−kj + F−k,−j ), j = i − k − 2, 3 � i � k + 1,


1i = i
2
(Fkj − Fk,−j + F−kj − F−k,−j ), j = i − k − 2, k + 3 � i � 2k + 1,


2i = i
2
(F−kj + F−k,−j − Fkj − Fk,−j ), j = i − k − 2, 3 � i � k + 1,


2i = 1

2
(Fkj − Fk,−j + F−k,−j − F−kj ), j = i − k − 2, k + 3 � i � 2k + 1,

which imply

D1 = 1

2
(Fk0 − F0k)

2 +
1

2

k−1∑
j=1

{F−kj + Fkj , Fk,−j + F−k,−j },

D2 = −1

2
(Fk0 + F0k)

2 +
1

2

k−1∑
j=1

{F−kj − Fkj , Fk,−j − F−k,−j },

D3 = i
2

(
F 2

k0 − F 2
0k

)
+ i

k−1∑
j=1

(FkjFk,−j − F−kjF−k,−j ), D0 = −iFkk.

(18)
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Since the case k = 1 does not fit the general scheme due to the triviality of the group K,
we assume from now k � 2. The case k = 1 will be considered below.

Let the spaceR�,i equals VBk
(λ) for a highest weight (A.4), where mi ∈ Z+, and ṼBk

(λ) be
a subspace of VBk

(λ) annulled by the subalgebra kC ∼= Bk−1. An element v ∈ ṼBk
(λ), v �= 0,

is a highest vector of the trivial one-dimensional Bk−1-module. Then propositions A.1 and
A.2 imply the existence of such numbers m′

j ∈ Z+, j = 1, . . . , k, that

mk � m′
k � mk−1 � · · · � m′

2 � m1 � m′
1 � −m1,

m′
k � 0 � m′

k−1 � 0 � · · · � m′
2 � 0 � |m′

1|.
Thus, m′

j = 0, j = 1, . . . , k − 1 and therefore mj = 0, j = 1, . . . , k − 2.
From now till the end of the present subsection suppose

λ = mk−1εk−1 + mkεk, mk � mk−1 � 0, mk,mk−1 ∈ Z+.

In this case, proposition A.1 implies that every module VDk
(m′

kεk) ⊂ VBk
(λ) contains the

unique one-dimensional module VBk−1(0). This fact leads to

dim ṼBk
(λ) = mk − mk−1 + 1. (19)

Thus, from proposition 1 one gets the following expansion [42]:

L2(SO(2k + 1), SO(2k − 1), µ) =
⊕

mk�mk−1
mk,mk−1∈Z+

(mk − mk−1 + 1)VBk
(mkεk + mk−1εk−1),

where the left-hand side is considered as a restriction of the left regular representation for the
group SO(2k + 1). On the other hand, the space

L2(SO(2k + 1), SO(2k − 1), µ)

as a DiffSO(2k+1)(SO(2k + 1)/SO(2k − 1))-module is expanded as

L2(SO(2k + 1), SO(2k − 1), µ)

=
⊕

mk�mk−1
mk,mk−1∈Z+

(
dim VBk

(mkεk + mk−1εk−1)
)
ṼBk

(mkεk + mk−1εk−1), (20)

where dim VBk
(mkεk + mk−1εk−1) is given by (A.8).

Let

D+ :=
k−1∑
j=1

FkjFk,−j +
1

2
F 2

k0, D− :=
k−1∑
j=1

F−kjF−k,−j +
1

2
F 2

0k,

C̃ := C|L2(SO(2k+1),SO(2k−1),µ) = F 2
kk + {Fk0, F0k} +

k−1∑
j=1

({Fkj , Fjk} + {Fk,−j , F−jk})

be operators from DiffSO(2k+1)(SO(2k + 1)/SO(2k − 1)), where C is the universal Casimir
operator (A.6). Due to (A.3) and (A.9), the operator D+ ‘raises’ weight subspaces of ṼBk

(λ)

and the operator D− ‘lowers’ them.
Since [Fkj , Fk,−j ] = [F−kj , F−k,−j ] = 0, one gets the following relations:

D1 = D+ + D− +
1

2

(
F 2

kk − C̃
)
, D2 = −D+ − D− +

1

2

(
F 2

kk − C̃
)
,

D3 = i(D+ − D−), D+ = 1

4
(D1 − D2) − i

2
D3,

D− = 1

4
(D1 − D2) +

i
2
D3, C̃ = −D2

0 − D1 − D2.

(21)
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Commutator relations (8) now give

[Fkk,D
+] = 2D+, [Fkk,D

−] = −2D−, (22)

[D+,D−] = − 1
2F 3

kk + 1
2 C̃Fkk + 1

4 (2k − 1)(2k − 3)Fkk. (23)

Formulae (A.5) and (A.7) imply

C̃
∣∣
ṼBk

(λ)
=
((

k + mk − 1

2

)2

+

(
k + mk−1 − 3

2

)2

−
(

k − 1

2

)2

−
(

k − 3

2

)2
)

id. (24)

It follows from the paper [36] that

ṼBk
(λ) = V−νεk

⊕ V−(ν−2)εk
⊕ · · · ⊕ V(ν−2)εk

⊕ Vνεk
, (25)

where ν = mk − mk−1 and all summands are one-dimensional weight spaces w.r.t. the Cartan
subalgebra hk . Formulae (A.3) and (A.9) imply

D+: Vjεk
→ V(j+2)εk

, D−: Vjεk
→ V(j−2)εk

.

The action of operators Fkk,D
+,D− in the space ṼBk

(λ) was calculated in [36] w.r.t.
some base. In particular, in ṼBk

(λ) there are no nontrivial invariant subspaces w.r.t. this action.
We shall obtain simpler formulae for the D+- and D−-action w.r.t. a base in ṼBk

(λ) with a
normalization different from those in [36].

Lemma 1. Let Lν := (−ν,−ν + 2, . . . , ν − 2, ν). There is a base (χj )j∈Lν
in ṼBk

(λ) such
that

Fkkχj = jχj , D+χj = 1
4 (j − mk − mk−1 − 2k + 3)(j − ν)χj+2, (26)

D−χj = 1
4 (j + mk + mk−1 + 2k − 3)(j + ν)χj−2, (27)

where χj = 0 if j �∈ Lν .

Proof. Since the action of an algebra, generated by operators Fkk,D
+,D−, is irreducible

in ṼBk
(λ), one can define by induction nonzero elements χj ∈ Vjεk

, j ∈ Lν such that
formulae (26) are valid. Prove by induction formula (27). For j = −ν it is evident. Suppose
that (27) is valid for j = −ν,−ν + 2, . . . , i, where i < ν. Then using (24) one gets
1
4 (i − mk − mk−1 − 2k + 3)(i − ν)D−χi+2 = D−D+χi = ([D−,D+] + D+D−)χi

= ( 1
2F 3

kk − 1
2 C̃Fkk − 1

4 (2k − 1)(2k − 3)Fkk

)
χi

+ 1
4 (i + mk + mk−1 + 2k − 3)(i + ν)D+χi−2

= 1
2

(
i3 − i

(
m2

k + m2
k−1 + (2k − 1)mk + (2k − 3)mk−1 + 1

2 (2k − 1)(2k − 3)
))

χi

+ 1
16 (i + mk + mk−1 + 2k − 3)(i + ν)(i − mk − mk−1 − 2k + 1)(i − 2 − ν)χi

= 1
16 (i − mk − mk−1 − 2k + 3)(i − ν)(i + mk + mk−1 + 2k − 1)(i + 2 + ν)χi,

due to the identity

(i − mk − mk−1 − 2k + 3)(i − ν)(i + mk + mk−1 + 2k − 1)(i + 2 + ν)

− (i + mk + mk−1 + 2k − 3)(i + ν)(i − mk − mk−1 − 2k + 1)(i − 2 − ν)

= 8i3 − 8i
(
m2

k + m2
k−1 + (2k − 1)mk + (2k − 3)mk−1 + 1

2 (2k − 1)(2k − 3)
)
.

Since (i − mk − mk−1 − 2k + 3)(i − ν) �= 0, we obtain

D−χi+2 = 1
4 (i + mk + mk−1 + 2k − 1)(i + 2 + ν)χi

that completes the induction. �
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Lemma 1, expansion (20) and relations (21) effectively describe the action of operators
D0,D1,D2,D3 in the space L2(SO(2k + 1), SO(2k − 1), µ). Consider the problem of finding
all common eigenvectors ψD of operators D2

0,D1,D2 and optionally D3. It is equivalent to
the problem of finding all common eigenvectors of operators D2

0,D
+ + D− and optionally

D+ − D− in the space ṼBk
(λ).

Eigenvectors for the operator D2
0 are

c+χj + c−χ−j , c± ∈ C, j ∈ Lν, j � 0

with eigenvalues −j 2. Since

(D+ + D−)(c+χj + c−χ−j ) = 1
4 (j − mk − mk−1 − 2k + 3)(j − ν)(c+χj+2 + c−χ−j−2)

+ 1
4 (j + mk + mk−1 + 2k − 3)(j + ν)(c+χj−2 + c−χ−j+2),

the requirement

(D+ + D−)(c+χj + c−χ−j ) ∼ c+χj + c−χ−j

implies (j − mk − mk−1 − 2k + 3)(j − ν) = 0 that leads to two cases: j = mk − mk−1 and
j = mk + mk−1 + 2k − 3.

In the first case, one gets

(D+ + D−)(c+χmk−mk−1 + c−χ−mk+mk−1)

= (mk − mk−1)

(
mk + k − 3

2

)
(c+χmk−mk−1−2 + c−χ−mk+mk−1+2)

that implies one of three possibilities

1. mk − mk−1 = 0;
2. mk − mk−1 − 2 = −mk + mk−1;
3. mk − mk−1 − 2 = 0, c+ + c− = 0.

Thus, we obtain the following eigenvectors:

1. (D+ + D−)χ0 = 0 for mk − mk−1 = 0;
2. (D+ + D−)(χ1 + χ−1) = (mk + k − 3

2

)
(χ1 + χ−1) for mk ∈ N,mk−1 = mk − 1;

3. (D+ + D−)(χ1 − χ−1) = −(mk + k − 3
2

)
(χ1 − χ−1) for mk ∈ N,mk−1 = mk − 1;

4. (D+ + D−)(χ2 − χ−2) = 0,mk−1 = mk − 2,mk = 2, 3, . . . .

In the second case, one gets mk + mk−1 + 2k − 3 = j � mk − mk−1 that implies
0 � mk−1 � 3

2 − k and thus k = 1 that contradicts to the assumption k � 2.
Using relations (21) this consideration can be summarized in the following proposition.

Proposition 3. For n = 2k, k � 2 there are four series of common eigenvectors in
ṼBk

(mkεk + mk−1εk−1),mk,mk−1 ∈ Z+ for the operators D2
0,D1,D2:

1. D2
0χ0 = D3χ0 = 0,D1χ0 = D2χ0 = −mk(mk + 2k − 2)χ0,mk = mk−1;

2. D2
0(χ1 + χ−1) = −(χ1 + χ−1),D2(χ1 + χ−1) = −mk(mk + 2k − 2)(χ1 + χ−1),

D1(χ1 + χ−1) = (−m2
k − 2(k − 2)mk + 2k − 3

)
(χ1 + χ−1),

D3(χ1 + χ−1) = i
(
mk + k − 3

2

)
(χ1 − χ−1),mk−1 = mk − 1,mk ∈ N

3. D2
0(χ1 − χ−1) = −(χ1 − χ−1),D1(χ1 − χ−1) = −mk(mk + 2k − 2)(χ1 − χ−1),

D2(χ1 − χ−1) = (−m2
k − 2(k − 2)mk + 2k − 3

)
(χ1 − χ−1),

D3(χ1 − χ−1) = −i
(
mk + k − 3

2

)
(χ1 + χ−1),mk−1 = mk − 1,mk ∈ N;

4. D2
0(χ2 − χ−2) = −4(χ2 − χ−2),D3(χ2 − χ−2) = −4i

(
mk + k − 3

2

)
χ0,

D1(χ2 − χ−2) = D2(χ2 − χ−2) = (−m2
k − 2(k − 2)mk + 2k − 3

)
(χ2 − χ−2),

mk−1 = mk − 2,mk = 2, 3, 4, . . . .

Only the first vector is also an eigenvector for the operator D3.
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Multiplicities of corresponding eigenvalues in L2(SO(n + 1), SO(n − 1), µ) are equal to
dim VBk

(mkεk + mk−1εk−1) and can be calculated in explicit form using (A.8).

Consider the case k = 1, n = 2. Now the group K is trivial and therefore ṼB1(λ) =
VB1(λ). The algebra B1 = so(3, C) ∼= sl(2, C) = A1 is spanned by elements F11, F01, F10

with commutator relations

[F11, F01] = −F01, [F11, F10] = F10, [F10, F01] = F11.

Its representation theory is well known: all its finite-dimensional irreducible modules are of
the form

VB1(mε1) = V−mε1 ⊕ V−(m−1)ε1 ⊕ · · · ⊕ V(m−1)ε1 ⊕ Vmε1 ,

where m ∈ Z+ ∪(Z+ + 1
2

)
, all Vjε1 are one-dimensional weight subspaces w.r.t. h1 = span(F11)

and

F10: Vjε1 → V(j+1)ε1 , j = −m, . . . , m − 1,

F01: Vjε1 → V(j−1)ε1 , j = −m + 1, . . . , m

are bijections.
We shall consider only m ∈ Z+ since

L2(SO(3), µ) =
⊕
m∈Z+

(2m + 1)VB1(mε1).

Thus, there are additional weight subspaces in the module VB1(mε1) w.r.t. expansion (25)
and the action of the algebra, generated by the operators D+ = 1

2F 2
10,D

− = 1
2F 2

01, is not
irreducible in VB1(mε1).

One can choose a base (χj )
m
j=−m in VB1(mε1) such that

χj ∈ Vjε1 , F11χj = jχj , F10χj = − 1√
2

√
(m − j)(m + j + 1)χj+1,

F01χj = − 1√
2

√
(m + j)(m − j + 1)χj−1,

where as above χj = 0 for |j | > m.
Eigenvectors for the operator D2

0 = −F 2
11 are

c+χj + c−χ−j , c± ∈ C, j = 0, 1, . . . , m

with eigenvalues −j 2. Since

(D+ + D−)(c+χj + c−χ−j )

= 1
4

√
(m − j)(m + j + 1)(m − j − 1)(m + j + 2)(c+χj+2 + c−χ−j−2)

+ 1
4

√
(m + j)(m − j + 1)(m + j − 1)(m − j + 2)(c+χj−2 + c−χ−j+2),

the requirement

(D+ + D−)(c+χj + c−χ−j ) ∼ c+χj + c−χ−j

implies (m − j)(m + j + 1)(m − j − 1)(m + j + 2) = 0 that gives two cases: j = m and
j = m − 1.

In the first case, one gets

(D+ + D−)(c+χm + c−χ−m) = 1
2

√
m(2m − 1)(c+χm−2 + c−χm+2)
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that implies one of three possibilities

1. m = j = 0;
2. m − 2 = −m;
3. m − 2 = 0, c+ + c− = 0.

This gives the following eigenvectors:

1. (D+ + D−)χ0 = 0,m = 0;
2. (D+ + D−)(χ1 + χ−1) = 1

2 (χ1 + χ−1),m = 1;
3. (D+ + D−)(χ1 − χ−1) = − 1

2 (χ1 − χ−1),m = 1;
4. (D+ + D−)(χ2 − χ−2) = 0,m = 2.

It is easily seen that these eigenvectors correspond to eigenvectors from proposition 3 for
mk = m,mk−1 = 0.

In the second case, it holds

(D+ + D−)(c+χm−1 + c−χ−m+1) = 1
2

√
3(2m − 1)(m − 1)(c+χm−3 + c−χm+3)

that implies one of three possibilities

1. m = 1, j = 0;
2. m − 3 = −m + 1;
3. m − 3 = 0, c+ + c− = 0.

Thus, one gets the following eigenvectors:

1. (D+ + D−)χ0 = 0,m = 1;
2. (D+ + D−)(χ1 + χ−1) = 3

2 (χ1 + χ−1),m = 2;
3. (D+ + D−)(χ1 − χ−1) = − 3

2 (χ1 − χ−1),m = 2;
4. (D+ + D−)(χ2 − χ−2) = 0,m = 3.

Since it holds C̃
∣∣
ṼB1 (mε1)

= m(m + 1) id and relations (21) are also valid in the case k = 1

one gets the following proposition.

Proposition 4. There are eight common eigenvectors in VB1(mε1) for the operators
D2

0,D1,D2:

1. D2
0χ0 = D1χ0 = D2χ0 = D3χ0 = 0,m = 0;

2. D2
0χ0 = D3χ0 = 0,D1χ0 = D2χ0 = −χ0,m = 1;

3. D2
0(χ1 + χ−1) = D2(χ1 + χ−1) = −(χ1 + χ−1),D1(χ1 + χ−1) = 0,

D3(χ1 + χ−1) = i
2
(χ1 − χ−1),m = 1;

4. D2
0(χ1 − χ−1) = D1(χ1 − χ−1) = −(χ1 − χ−1),D2(χ1 − χ−1) = 0,

D3(χ1 − χ−1) = − i
2
(χ1 + χ−1),m = 1;

5. D2
0(χ2 − χ−2) = −4(χ2 − χ−2),D1(χ2 − χ−2) = D2(χ2 − χ−2) = −(χ2 − χ−2),

D3(χ2 − χ−2) = −√
6iχ0,m = 2;

6. D2
0(χ1 + χ−1) = D1(χ1 + χ−1) = −(χ1 + χ−1),D2(χ1 + χ−1) = −4(χ1 + χ−1),

D3(χ1 + χ−1) = 3

2
i(χ1 − χ−1),m = 2;

7. D2
0(χ1 − χ−1) = D2(χ1 − χ−1) = −(χ1 − χ−1),D1(χ1 − χ−1) = −4(χ1 − χ−1),

D3(χ1 − χ−1) = −3

2
i(χ1 + χ−1),m = 2;
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8. D2
0(χ2 − χ−2) = D1(χ2 − χ−2) = D2(χ2 − χ−2) = −4(χ2 − χ−2),

D3(χ2 − χ−2) = −√
30 iχ0,m = 3.

Only the first and the second vectors are also the eigenvectors for the operator D3.
Multiplicities of corresponding eigenvalues in L2(SO(3), µ) are 2m + 1.

5.2. The case n = 2k − 1

Here, we use notation from appendix A.2. The algebra Dk is considered there as a subalgebra
of Bk . Therefore, one can easily obtain analogues of formulae (18) simply by deleting the
terms Fk0 and F0k:

D0 = −iFkk, D1 = 1

2

k−1∑
j=1

{F−kj + Fkj , Fk,−j + F−k,−j },

D2 = 1

2

k−1∑
j=1

{F−kj − Fkj , Fk,−j − F−k,−j }, D3 = i
k−1∑
j=1

(FkjFk,−j − F−kjF−k,−j ).

Let the space R�,i equals VDk
(λ) for a highest weight (A.10), where mi ∈ Z+, i � 2,m1 ∈

Z, and ṼDk
(λ) be a subspace of VDk

(λ) annulled by the subalgebra kC ∼= Dk−1. Reasoning as
above in the case n = 2k, one gets that ṼDk

(λ) is nontrivial iff

λ = mkεk + mk−1εk−1, mk � |mk−1|, mk ∈ Z+, mk−1 ∈ Z
′
k, (28)

where Z
′
k = Z+ for k � 3 and Z

′
2 = Z. In this case, one has dim ṼDk

(λ) = mk − |mk−1| + 1.
Below in the present subsection we suppose that condition (28) is valid. This leads to the

expansion

L2(SO(2k), SO(2k − 2), µ) =
⊕

mk�|mk−1|
mk∈Z+,mk−1∈Z

′
k

(mk − |mk−1| + 1)VDk
(mkεk + mk−1εk−1)

of the left SO(2k)-space L2(SO(2k), SO(2k − 2), µ) and to the expansion

L2(SO(2k), SO(2k − 2), µ)

=
⊕

mk�|mk−1|
mk∈Z+,mk−1∈Z

′
k

(
dim VDk

(mkεk + mk−1εk−1)
)
ṼDk

(mkεk + mk−1εk−1), (29)

of the same space as a DiffSO(2k)(SO(2k)/SO(2k − 2))-module, where the dimension
dim VDk

(mkεk + mk−1εk−1) is given by (A.8).
Now let

D+ :=
k−1∑
j=1

FkjFk,−j , D− :=
k−1∑
j=1

F−kjF−k,−j ,

C̃ := C|L2(SO(2k),SO(2k−2),µ) = F 2
kk +

k−1∑
j=1

({Fkj , Fjk} + {Fk,−j , F−jk})

be operators from DiffSO(2k)(SO(2k)/SO(2k − 2)), where C is the universal Casimir
operator (A.11).
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Formulae (21) and (22) are valid without any modification and formula (23) becomes

[D+,D−] = − 1
2F 3

kk + 1
2 C̃Fkk + (k − 1)(k − 2)Fkk.

Now

C̃|ṼDk
(λ) = ((mk + k − 1)2 + (mk−1 + k − 2)2 − (k − 1)2 − (k − 2)2) id.

From [35] it follows that

ṼDk
(λ) = V−νεk

⊕ V−(ν−2)εk
⊕ · · · ⊕ V(ν−2)εk

⊕ Vνεk
,

where ν = mk − |mk−1|, all summands are one-dimensional weight spaces w.r.t. the Cartan
subalgebra hk ⊂ Dk and the algebra, generated by the operators D+,D−, acts in ṼDk

(λ) in an
irreducible way.

Again we shall simplify formulae for this action w.r.t. [35] using another base. The next
lemma can be proved completely similar to the proof of lemma 1.

Lemma 2. Let ν := mk −|mk−1|, Lν := (−ν,−ν + 2, . . . , ν −2, ν). There is a base (χj )j∈Lν

in ṼDk
(λ) such that

Fkkχj = jχj , D+χj = 1
4 (j − mk − |mk−1| − 2k + 4)(j − ν)χj+2,

D−χj = 1
4 (j + mk + |mk−1| + 2k − 4)(j + ν)χj−2,

where χj = 0 if j �∈ Lν .

Arguing as in the Bk-case one gets the following proposition.

Proposition 5. For n = 2k − 1, k � 2, there are four series of common eigenvectors in
ṼDk

(mkεk + |mk−1|εk−1),mk ∈ Z+,mk−1 ∈ Z
′
k for the operators D2

0,D1,D2:

1. D2
0χ0 = D3χ0 = 0,D1χ0 = D2χ0 = −mk(mk + 2k − 3)χ0,mk = |mk−1|;

2. D2
0(χ1 + χ−1) = −(χ1 + χ−1),D2(χ1 + χ−1) = −mk(mk + 2k − 3)(χ1 + χ−1),

D1(χ1 + χ−1) = (−m2
k + (5 − 2k)mk + 2k − 4

)
(χ1 + χ−1),

D3(χ1 + χ−1) = i(mk + k − 2)(χ1 − χ−1), |mk−1| = mk − 1,mk ∈ N

3. D2
0(χ1 − χ−1) = −(χ1 − χ−1),D1(χ1 − χ−1) = −mk(mk + 2k − 3)(χ1 − χ−1),

D2(χ1 − χ−1) = (−m2
k + (5 − 2k)mk + 2k − 4

)
(χ1 − χ−1),

D3(χ1 − χ−1) = −i(mk + k − 2)(χ1 + χ−1), |mk−1| = mk − 1,mk ∈ N;

4. D2
0(χ2 − χ−2) = −4(χ2 − χ−2),D3(χ2 − χ−2) = −4i(mk + k − 2)χ0,

D1(χ2 − χ−2) = D2(χ2 − χ−2) = (−m2
k + (5 − 2k)mk + 2k − 4

)
(χ2 − χ−2),

|mk−1| = mk − 2,mk = 2, 3, 4, . . . .

Only the first vector is also an eigenvector for the operator D3.
Multiplicities of corresponding eigenvalues in L2(SO(n + 1), SO(n − 1), µ) are equal to

dim VDk
(mkεk + mk−1εk−1) and can be calculated in explicit form using (A.8).

Remark 1. For k = 2, a value of mk−1 = m1 can have an arbitrary sign and one gets eight
common eigenvectors found in [34].

Remark 2. Results of propositions 3–5 correspond to proposition 2 and are even more
restrictive. Indeed, if ψD ∈ L2(SO(n + 1), SO(n − 1), µ) is an eigenfunction for operators
D2

0,D1,D2 and D3, then D0ψD = D3ψD = 0,D1ψD = D2ψD .
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6. Scalar spectral equations and some energy levels for the two-body problem in Sn

Here, we shall consider the spectral problem (13), where the operator H is defined in (11)
and ψD is one of common eigenfunctions for operators D2

0,D1,D2 and optionally D3. In
this section, m denotes reduced mass (10) and integers mk correspond to highest weights in
so(n + 1)-modules.

Let D2
0ψD = δ0ψD,DiψD = δiψD, i = 1, 2. In accordance with remark 2 there are two

main cases:

1. D3ψD = 0, δ0 = 0, δ1 = δ2, particle masses are arbitrary;

2. D3ψD �∼ ψD , particle masses are equal.

In the first case,

(CD1 + AD2 + 2BD3)ψD = δ1(C + A)ψD = (1 + r2)2

4mR2r2
δ1ψD.

In the second case,

A = 1 + r2

4mR2r2
, B ≡ 0, C = 1 + r2

4mR2
.

In all cases, one gets the following spectral equation for the function f (r):

f ′′ +
n − 1 + (3 − n)r2

(1 + r2)r
f ′ +

8

(1 + r2)2

(
mR2(E − V (r)) − a

r2
− b − cr2

)
f = 0,

a, b, c � 0, 0 < r < ∞. (30)

where coefficients a, b, c are described below.
For eigenfunctions ψD classified in proposition 3 (n = 2k, k = 2, 3, . . .), one has

1. a = c = mk(mk + 2k − 2)/8, b = 2a,mk ∈ Z+, masses are arbitrary;
2. a = mk(mk + 2k − 2)/8, b = (

m2
k + (2k − 3)mk − k + 2

)/
4, c = (

m2
k + 2(k − 2)mk −

2k + 3
)/

8,mk ∈ N, masses are equal;
3. a = (

m2
k + 2(k − 2)mk − 2k + 3

)/
8, b = (

m2
k + (2k − 3)mk − k + 2

)/
4, c =

mk(mk + 2k − 2)/8,mk ∈ N, masses are equal;
4. a = c = (m2

k +2(k−2)mk −2k+3
)/

8, b = (m2
k +2(k−2)mk −2k+5

)/
4,mk = 2, 3, . . . ,

masses are equal.

Proposition 4 (n = 2) gives the following values for a, b, c:

1. a = c = b = 0, masses are arbitrary;
2. a = c = 1/8, b = 1/4, masses are arbitrary;
3. a = 1/8, b = 1/4, c = 0, masses are equal;
4. a = 0, b = 1/4, c = 1/8, masses are equal;
5. a = c = 1/8, b = 3/4, masses are equal;
6. a = 1/2, b = 3/4, c = 1/8, masses are equal;
7. a = 1/8, b = 3/4, c = 1/2, masses are equal;
8. a = c = 1/2, b = 3/2, masses are equal.

Finally, proposition 5 corresponds to the following cases (n = 2k − 1, k = 2, 3, . . .):

1. a = c = mk(mk + 2k − 3)/8, b = 2a,mk ∈ Z+, masses are arbitrary;
2. a = mk(mk + 2k − 3)/8, b = (

m2
k + (2k − 4)mk − k + 5

2

)/
4, c = (

m2
k + (2k − 5)mk −

2k + 4
)/

8,mk ∈ N, masses are equal;
3. a = (

m2
k + (2k − 5)mk − 2k + 4

)/
8, b = (

m2
k + (2k − 4)mk − k + 5

2

)/
4, c =

mk(mk + 2k − 3)/8,mk ∈ N, masses are equal;
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4. a = c = (m2
k +(2k−5)mk −2k+4

)/
8, b = (m2

k +(2k−5)mk −2k+6
)/

4,mk = 2, 3, . . . ,

masses are equal.

We shall consider equation (30) for the Coulomb and oscillator potentials.

6.1. Coulomb potential

For the Coulomb potential,

Vc = − γ

R
cot

ρ

R
= γ

2R

(
r − 1

r

)
, γ > 0 (31)

theorems 1 and B.1 imply the self-adjointness of the two-body Hamiltonian HVc
with its

domain defined by (B.1), where V1 = 0 for 0 < r < 1 and V1 = Vc for 1 � r < ∞.
Equation (30) for V = Vc is the Fuchsian differential equation (see appendix C) with four

singular points r = 0,±i,∞ and corresponding characteristic exponents:

ρ
(0)
± = 1

2 (2 − n ±
√

(n − 2)2 + 32a), ρ
(∞)
± = 1

2 (2 − n ±
√

(n − 2)2 + 32c),

ρ
(i)
± = 1

2 (n − 1 ±
√

(n − 1)2 + 8(mER2 − imRγ + a − b + c)),

ρ
(−i)
± = 1

2 (n − 1 ±
√

(n − 1)2 + 8(mER2 + imRγ + a − b + c)).

(32)

Here and below we suppose that a square root for a positive number is positive; for other
numbers it is an arbitrary root.

The requirement f (r)ψD ∈ Dom(HVc
) restricts asymptotics of f (r) near singular points

r = 0 and r = ∞. Let f (r) ∼ rρ(0)

as r → + 0 and f (r) ∼ r−ρ(∞)

as r → + ∞. We shall
show that f (r)ψD ∈ Dom(HVc

) iff ρ(0) = ρ
(0)
+ and ρ(∞) = ρ

(∞)
+ .

The inclusion

f ∈ L2

(
R+,

rn−1 dr

(1 + r2)n

)
evidently implies ρ(0) > −n/2, ρ(∞) > −n/2. On the other hand, one can easily see that the
inequality a � 1/8 leads to ρ

(0)
− � −n/2 and the inequality c � 1/8 leads to ρ

(∞)
− � −n/2.

From the consideration above it follows that if a < 1/8 (c < 1/8) then a = 0 (c = 0).
For a = 0, the inequality ρ

(0)
− = 2 − n > −n/2 implies n < 4.

For a = 0, n = 3, the asymptotic f (r) ∼ rρ
(0)
− = 1/r means that 	(f ψD) ∼ δ(0) as

r → 0 that contradicts to

	 (f ψD) ∈ L2
loc(S

n × Sn, χ × χ), (33)

see theorem B.1.
For the case a = 0, n = 2, ρ

(0)
+ = ρ

(0)
− = 0 holds and the theory of Fuchsian differential

equations [55, 56] implies that canonical asymptotics of a solution for (30) near r = 0 are 1 and
log r . The latter asymptotic again leads to 	(f ψD) ∼ δ(0) as r → 0 that again contradicts
to (33).

Thus, in all cases it should be f (r) ∼ rρ
(0)
+ as r → 0. Reasoning in a similar way one

also gets in all cases the asymptotic f (r) ∼ r−ρ
(∞)
+ as r → + ∞.

Consider the problem of reducing equation (30) with potential (31) to the hypergeometric
equation via reducing (30) to the Heun equation by transformations (C.2), (C.3) and then using
theorem C.1.

Singular points of equation (30) form a harmonic quadruple (see appendix C). Therefore,
one can use only the first case of theorem C.1. Move singular points (0,±i,∞) of
equation (30) to the quadruple (0, 1, 2,∞) by a fractional linear transformation t = τ(r)

of the independent variable.
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Since the order of singular points on a circle or on a line is conserved by such a
transformation only two possibilities can occur. The first one corresponds to the map of
the unordered pair (±i) into the unordered pair (0, 2). The second one corresponds to the map
of the unordered pair (0,∞) into the unordered pair (0, 2).

Then, one can reduce the transformed equation to the Heun one by a substitution of the
form (C.3). One of requirements of the first case of theorem C.1 is the equality of characteristic
exponents at points 0 and 2. In terms of characteristic exponents (32) it means that either∣∣ρ(i)

+ − ρ
(i)
−
∣∣ = ∣∣ρ(−i)

+ − ρ
(−i)
−
∣∣ or

∣∣ρ(0)
+ − ρ

(0)
−
∣∣ = ∣∣ρ(∞)

+ − ρ
(∞)
−
∣∣. The first possibility cannot

occur for a nontrivial γ . Therefore, without losing generality, one can consider the map

t = τ(r) := 2r

r + i
, τ : (−i, 0, i,∞) → (∞, 0, 1, 2).

This map transforms equation (30) with potential (31) into the equation

ftt (t) + A(t)ft (t) − B(t)f (t) = 0, |t − 1| = 1, Im t < 0, (34)

where

A(t) = nt2 − 2nt + 2n − 2

t (t − 1)(t − 2)
,

B(t) = 2
m(ER2t2(t − 2)2 + Rγ it (t − 2)(t2 − 2t + 2)) + a(t − 2)4 − bt2(t − 2)2 + ct4

t2(t − 1)2(t − 2)2
.

The substitution

f (t) = tρ
(0)
+ (t − 1)ρ

(i)
+ (t − 2)ρ

(∞)
+ w(t)

transforms (34) to Heun equation (C.10) with the parameter γ ′ instead of γ , where

α = ρ
(0)
+ + ρ

(i)
+ + ρ

(∞)
+ + ρ

(−i)
+ , β = ρ

(0)
+ + ρ

(i)
+ + ρ

(∞)
+ + ρ

(−i)
− , d = 2,

γ ′ = 1 − ρ
(0)
− + ρ

(0)
+ , δ = 1 − ρ

(i)
− + ρ

(i)
+ , ε = 1 − ρ

(∞)
− + ρ

(∞)
+ .

Here, tρ
(0)
+ (t −1)ρ

(i)
+ (t −2)ρ

(∞)
+ means the function holomorphic on C\(−∞, 2] and real for real

t > 2. Restrictions on asymptotics of the function f near the points r = 0,∞ are equivalent
to the boundedness of the function w(t) near the points t = 0, 2.

Obviously, the accessory parameter q can be found as

q = −2 lim
t→0

t

(
−B(t) +

(
ρ

(0)
+

t
+

ρ
(i)
+

t − 1
+

ρ
(∞)
+

t − 2

)
A(t) +

ρ
(0)
+

(
ρ

(0)
+ − 1

)
t2

+
2ρ

(0)
+ ρ

(i)
+

t (t − 1)

+
2ρ

(0)
+ ρ

(∞)
+

t (t − 2)

)
= 4ρ(0)

+ ρ(i)
+ + 2ρ(0)

+ ρ(∞)
+ − (n − 3)ρ(0)

+ + (n − 1)
(
2ρ(i)

+ + ρ(∞)
+

)
− 4mRγ i + 16a. (35)

Theorem C.1 implies that this Heun equation can be transformed into the hypergeometric
equation by a rational change of independent variable t → z : z = P(t), where P is a rational
function, iff

γ ′ = ε, (36)

αβ − q = 0. (37)

Equation (36) is equivalent to

a = c. (38)
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Using the equalities

α = ρ(0)
+ + ρ(i)

+ + ρ(∞)
+ + 1

2 (n − 1 +
√

(n − 1)2 + 8(mER2 + imRγ + a − b + c)),

β = ρ(0)
+ + ρ(i)

+ + ρ(∞)
+ + 1

2 (n − 1 −
√

(n − 1)2 + 8(mER2 + imRγ + a − b + c)),

one can rewrite equation (37) as(
ρ(0)

+ + ρ(i)
+ + ρ(∞)

+ + 1
2 (n − 1)

)2 − 1
4 ((n − 1)2 + 8(mER2 + imRγ + a − b + c)) − 4ρ

(0)
+ ρ

(i)
+

− 2ρ(0)
+ ρ(∞)

+ + (n − 3)ρ(0)
+ − (n − 1)

(
2ρ(i)

+ + ρ(∞)
+

)
+ 4mRγ i − 16a

= (ρ(0)
+

)2
+
(
ρ(i)

+

)2
+
(
ρ(∞)

+

)2
+ 2ρ(i)

+

(
ρ(∞)

+ − ρ(0)
+

)
+ (2n − 4)ρ(0)

+

− (n − 1)ρ(i)
+ + 2mRγ i − 2mER2 − 18a + 2b − 2c = 0. (39)

Excluding squares of values ρ
(0)
+ , ρ

(i)
+ , ρ

(∞)
+ from (39) with the help of obvious equations(

ρ(0)
+

)2
+ (n − 2)ρ(0)

+ − 8a = 0,(
ρ(i)

+

)2 − (n − 1)ρ(i)
+ − 2mR(RE − γ i) − 2(a − b + c) = 0,(

ρ(∞)
+

)2
+ (n − 2)ρ(∞)

+ − 8c = 0

for characteristic exponents, one gets(
2ρ(i)

+ − n + 2
)(

ρ(∞)
+ − ρ(0)

+

)
+ 8(c − a) = 0.

For a = c, it holds ρ
(∞)
+ = ρ

(0)
+ and thus equation (37) is a consequence of (38).

From here till the end of the present subsection we suppose that a = c. This condition
corresponds to cases 1 and 4 of proposition 3, cases 1, 2, 5 and 8 of proposition 4, and cases
1 and 4 of proposition 5.

The fist case of theorem C.1 implies then that the function w w.r.t. a new independent
variable

z := 1 − (t − 1)2 = t (2 − t) (40)

satisfies the hypergeometric equation:

z(1 − z)w′′(z) + (γ̃ − (̃α + β̃ + 1)z)w′(z) − α̃β̃w(z) = 0. (41)

The correspondence between characteristic exponents of the Heun and the hypergeometric
equations connected by (40) implies

γ̃ = γ ′ = 1 +
√

(n − 2)2 + 32a ∈ R, α̃ = 1
2α = 1

2 + 1
2

√
(n − 2)2 + 32a + 1

4 (s + s̄) ∈ R,

β̃ = 1
2β = 1

2 + 1
2

√
(n − 2)2 + 32a + 1

4 (−s + s̄) /∈ R,

where s =
√

(n − 1)2 + 8(mER2 + imRγ + 2a − b).
Since

z − 1 = −
(

r − i

r + i

)2

,

the half-line [0,∞] on the r-plane is mapped into the circumference on the z-plane defined by
the equation |z − 1| = 1, while the values r = 0,∞ correspond to the point z = 0.

The function w(z) is bounded near the point z = 0 and 1 − γ̃ = −
√

(n − 2)2 + 32a � 0;
therefore it holds that (see (C.5))

w(z) = w+(z) := c+F (̃α, β̃; γ̃ ; z), z ∈ (|z − 1| = 1, Im z > 0), c+ = const,

w(z) = w−(z) := c−F (̃α, β̃; γ̃ ; z), z ∈ (|z − 1| = 1, Im z < 0), c− = const.
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An equivalent problem for the hypergeometric equation was considered in [14]. However,
there was made an assumption equivalent to c+ = c− without any proof (formula (3) in [14]).
Below we fill this gap.

Functions w±(z) should be analytic continuations of each other through the regular point
z = 2.3 Due to formula (C.6) (applicable since γ̃ − α̃ − β̃ /∈ R), it means that functions

c+
�(γ̃ )�(γ̃ − α̃ − β̃)

�(γ̃ − α̃)�(γ̃ − β̃)
F (̃α, β̃; α̃ + β̃ − γ̃ + 1; 1 − z), |z − 1| = 1, Im z > 0

and

c−
�(γ̃ )�(γ̃ − α̃ − β̃)

�(γ̃ − α̃)�(γ̃ − β̃)
F (̃α, β̃; α̃ + β̃ − γ̃ + 1; 1 − z), |z − 1| = 1, Im z < 0

are analytic continuations of each other through the point z = 2 as well as functions

c+
�(γ̃ )�(̃α + β̃ − γ̃ )

�(̃α)�(β̃)
(1 − z)γ̃−α̃−β̃F (γ̃ − α̃, γ̃ − β̃; γ̃ − α̃ − β̃ + 1; 1 − z),

|z − 1| = 1, Im z > 0

and

c−
�(γ̃ )�(̃α + β̃ − γ̃ )

�(̃α)�(β̃)
(1 − z)γ̃−α̃−β̃F (γ̃ − α̃, γ̃ − β̃; γ̃ − α̃ − β̃ + 1; 1 − z),

|z − 1| = 1, Im z < 0.

The first requirement is equivalent to the equality

(c+ − c−)
�(γ̃ )�(γ̃ − α̃ − β̃)

�(γ̃ − α̃)�(γ̃ − β̃)
= 0, (42)

while the second one is equivalent to the equality

(c+ − c− exp(2π i(γ̃ − α̃ − β̃)))
�(γ̃ )�(̃α + β̃ − γ̃ )

�(̃α)�(β̃)
= 0. (43)

Since γ̃ − α̃ − β̃ /∈ R, linear system (42), (43) has a nontrivial solution c+, c− iff either

�(γ̃ )�(γ̃ − α̃ − β̃)

�(γ̃ − α̃)�(γ̃ − β̃)
= 0 or

�(γ̃ )�(̃α + β̃ − γ̃ )

�(̃α)�(β̃)
= 0.

Taking into account γ̃ − β̃ �∈ R, β̃ �∈ R, one gets γ̃ − α̃ = −k + 1 or α̃ = −k + 1, k ∈ N.
Not losing generality suppose that Re s < 0. Then, the first equality is impossible and

the second one yields

s = 1 − 2k −
√

(n − 2)2 + 32a +
4imRγ

1 − 2k −
√

(n − 2)2 + 32a
,

since Im s2 = 8imRγ . From the definition of s, one gets therefore the following formula for
energy levels:

Ek = 1

mR2

(
1

2
(k2 − k + 1) − n

4
+ 2a + b +

2k − 1

4

√
(n − 2)2 + 32a

)
− 2mγ 2

(
√

(n − 2)2 + 32a + 2k − 1)2
, k ∈ N.

These energy levels are degenerated and their multiplicities coincide with multiplicities
of eigenvalues in propositions 3–5.

3 Recall that the function F(α′, β ′; γ ′; z) is holomorphic in C\[1, +∞).
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Taking into account all transformations used while reducing equation (30) to the
hypergeometric one, we get the following expression for radial eigenfunctions (up to an
arbitrary constant nonzero factor):

fk(r) = rρ
(0)
+ (r − i)ρ

(i)
+

(r + i)ρ
(0)
+ +ρ

(i)
+ +ρ

(∞)
+

k−1∑
j=0

(−1)j

j !(k − j − 1)!

(β̃)j

(γ̃ )j

(4ri)j

(r + i)2j
,

where ρ
(0)
+ , ρ

(i)
+ , ρ

(∞)
+ , β̃ and γ̃ are given by above formulae for E = Ek .

6.2. Oscillator potential

The oscillator potential for the sphere Sn has the form

Vo(r) = 1

2
R2ω2 tan2 ρ

R
= 2R2ω2r2

(1 − r2)2
, ω ∈ R+.

It has a positive singularity along the sphere equator and looks like an infinite potential well.
Therefore, from the physical point of view it is natural to consider wavefunctions defined on
M ′ and vanishing as r → 1.

From the mathematical point of view theorem B.1 is not applicable since

Vo �∈ L1
loc(S

n × Sn, χ × χ).

However, since Vo � 0 one can use the Friedrichs extension (HVo
)F of a Hamiltonian

with the domain given by theorem B.2, where M ′ ⊂ Sn × Sn is defined by the inequality
r = tan(ρ/(2R)) < 1.

Equation (30) for V = Vo is a Fuchsian one with six singular points 0,±1,±i,∞ and
corresponding characteristic exponents:

ρ
(0)
± = 1

2 (2 − n ±
√

(n − 2)2 + 32a), ρ
(∞)
± = 1

2 (2 − n ±
√

(n − 2)2 + 32c),

ρ
(i)
± = ρ

(−i)
± = 1

2 (n − 1) ± 1
2

√
(n − 1)2 + 8mER2 + 4mR4ω2 + 8(a − b + c),

ρ
(1)
± = ρ

(−1)
± = 1

2 (1 ±
√

1 + 4R4mω2).

Similarly to the previous section the function f (r), r ∈ (0, 1) should be ∼rρ
(0)
+ as r → +0.

On the other hand, the inclusion

f (r)ψD ∈ W 1,2(M ′, χ × χ)

implies the convergence of the integral∫
M ′

g2(∇(f ψD),∇(f ψD)) dχ × dχ, (44)

where g2 is defined in (5) and ∇ means the gradient operator.
The convergence of (44) is equivalent to the convergence of its ‘radial part’∫ 1

0
|f ′(r)|2 rn−1 dr

(1 + r2)n−4
.

Therefore, if f ∼ rρ(1)

as r → 1 − 0, then ρ(1) > 1/2 and thus ρ(1) = rρ
(1)
+ .

Conversely, it can be easily verified that if f is a solution of (30) with asymptotics f (r) ∼
rρ

(0)
+ as r → 0 and f (r) ∼ rρ

(1)
+ as r → 1 − 0 for V = Vo, then f (r)ψD ∈ Dom

((
HVo

)
F

)
.

Fortunately, one can glue points r = ±1 together (as well as points r = ±i) by the change
of the independent variable r → ζ, ζ = r2, which transforms the differential equation under
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consideration into the following Fuchsian differential equation with four singular points:

fζζ +
n + (4 − n)ζ

2ζ(ζ + 1)
fζ +

2

ζ(ζ + 1)2

(
mR2

(
E − 2R2ω2ζ

(ζ − 1)2

)
− a

ζ
− b − cζ

)
f = 0,

0 < ζ < 1. (45)

The singular points −1, 0, 1,∞ of this equation form a harmonic quadruple and correspond,
respectively, to the following characteristic exponents

ρ
(i)
± , 1

2ρ
(0)
± , ρ

(1)
± , 1

2ρ
(∞)
± .

The same arguments as for the Coulomb problem leads to the conclusion that the only
possibility to transform equation (45) to the hypergeometric one via transformations (C.2),
(C.3) and then using theorem C.1 corresponds to the map of the unordered pair (0,∞) into
the unordered pair (0, 2) by a Möbius transformation.

Without losing generality, one can consider the substitution

t = τ(ζ ) = 2ζ

ζ + 1
, τ : (−1, 0, 1,∞) → (∞, 0, 1, 2). (46)

The interval under consideration for the variable t is again (0, 1). Substitution (46) transforms
equation (45) into equation (34) with

A(t) = n(t − 1)

t (t − 2)
, B(t) = 2

t (t − 2)

(
mR2

(
E +

R2ω2t (t − 2)

2(t − 1)2

)
− 2a

t
+ a − b +

ct

t − 2

)
.

Define a function w(t) by

w(t) = t−
1
2 ρ

(0)
+ (t − 1)−ρ

(1)
+ (t − 2)−

1
2 ρ

(∞)
+ f (t).

It satisfies Heun equation (C.10), where

α = 1
2ρ

(0)
+ + ρ

(1)
+ + 1

2ρ
(∞)
+ + ρ

(i)
+ , β = 1

2ρ
(0)
+ + ρ

(1)
+ + 1

2ρ
(∞)
+ + ρ

(i)
− , d = 2,

γ = 1 + 1
2

(
ρ

(0)
+ − ρ

(0)
−
)
, δ = 1 + ρ

(1)
+ − ρ

(1)
− , ε = 1 + 1

2

(
ρ

(∞)
+ − ρ

(∞)
−
)
.

Here, t−
1
2 ρ

(0)
+ (t − 1)−ρ

(1)
+ (t − 2)−

1
2 ρ

(∞)
+ means the function holomorphic on the domain

C\((−∞, 0] ∪ [1, +∞)) and real for real t ∈ (0, 1). Restrictions on asymptotics of the
function f (r) near the points r = 0, 1 are equivalent to the boundedness of the function w(t)

near the points t = 0, 1.
Calculation, similar to (35), yields the following value of accessory parameter q

for (C.10):

q = −2mR2E + 2b + n

(
ρ(1)

+ +
1

4
ρ(∞)

+

)
+ 2ρ(0)

+ ρ(1)
+ +

1

2
ρ(0)

+ ρ(∞)
+ +

n

4
ρ(0)

+ .

Condition (36) of theorem C.1 is again equivalent to (38). Condition (37) of the same theorem
can be written as

αβ − q = ρ(1)
+

(
ρ(∞)

+ − ρ(0)
+

) = 0,

which is again a consequence of (36).
Suppose that condition (36) is valid. Thus, we are in the situation of the first case of

theorem C.1 and changing the independent variable t by a new one z according to (40), one
gets hypergeometric equation (41) with

α̃ = 1
2α = 1

4 (2 +
√

(n − 2)2 + 32a +
√

1 + 4R4mω2 + s),

β̃ = 1
2β = 1

4 (2 +
√

(n − 2)2 + 32a +
√

1 + 4R4mω2 − s),

γ̃ = γ = 1 + 1
2

√
(n − 2)2 + 32a,
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where s =
√

(n − 1)2 + 8mER2 + 4mR4ω2 + 16a − 8b. The interval (0, 1) � t corresponds
to the interval (0, 1) � z, therefore the requirement on asymptotic of the function f (t) near
the point t = 0 implies

w(z) = F (̃α, β̃; γ̃ ; z).

Also due to

γ̃ − α̃ − β̃ = − 1
2

√
1 + 4R4mω2 < 0, Re α̃ > 0

and (C.9), the requirement on asymptotic of the function f (t) near the point t = 1 implies

β̃ = −k, k = 0, 1, 2, . . . .

This leads to energy levels

Ek = 1

8mR2
((4k + 2 +

√
(n − 2)2 + 32a)2 − (n − 1)2 − 16a + 8b + 1)

+
ω

2
√

m
(4k + 2 +

√
(n − 2)2 + 32a)

√
1 +

1

4R4m2
, k = 0, 1, 2, . . . .

Again multiplicities of these energy levels coincide with multiplicities of eigenvalues in
propositions 3–5.

The expression for radial eigenfunctions (up to an arbitrary constant nonzero factor) is

fk(r) = rρ
(0)
+ (r2 − 1)ρ

(1)
+

(r2 + 1)
1
2 ρ

(0)
+ +ρ

(1)
+ + 1

2 ρ
(∞)
+

k∑
j=0

(−1)j

j !(k − j)!

(̃α)j

(γ̃ )j

4j r2j

(r2 + 1)2j
,

where ρ
(0)
+ , ρ

(1)
+ , ρ

(∞)
+ , α̃ and γ̃ are given by above formulae for E = Ek .

7. Conclusion

The possibility to find in an explicit way some (but not all) eigenvalues for a Schrödinger
operator characterizes so-called quasi-exactly solvable models [43–45]. In the present paper,
we have shown that the two-body problem on spheres Sn with Coulomb and oscillator potentials
is quasi-exactly solvable for any n. A possible generalization for other compact two-point
homogeneous spaces is an open problem.

The quasi-exactly solvability here is an attribute not of a radial differential equation (30),
but of the whole problem. It stems from the two causes. The first cause follows from the
fact that we restrict our consideration on the subspace of L(G,K,µ) (see (12)) consisting
of common eigenfunctions for operators D2

0,D1,D2 and optionally D3. For every such
eigenfunction one gets a separate radial differential equation (30). For the Coulomb and
oscillator potentials this equation can be reduced to the Heun one, but the further reduction to
the hypergeometric equation using Maier’s scheme is possible only for some eigenfunctions
(just for those that satisfies equation (38)) and this is the second cause.
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Appendix A. Orthogonal complex Lie algebras and their representations

A.1. Lie algebra Bk

Here is a brief description of the simple complex Lie algebra Bk
∼= so(2k + 1, C) (see [46, 47]

and [48] for details).
Denote

Si =


0 0 . . . 0 0 1
0 0 . . . 0 1 0
...

...
. . .

...
...

1 0 . . . 0 0 0

 ∈ GL(i), i ∈ N.

Consider the Lie algebra Bk
∼= so(2k + 1, C) as

Bk = (A ∈ gl(2k + 1, C)|AT S2k+1 + S2k+1A = 0). (A.1)

Following [36], we shall enumerate the rows and columns of A ∈ Bk by the indices
−k, . . . ,−1, 0, 1, . . . , k. The convenience of such notation is due to the fact that subalgebras
Bi ⊂ Bk, i < k, correspond to indices of rows and columns from −i to i.

It can be easily shown that a matrix

A =
∑
i,j

aijEij ∈ gl(2k + 1, C)

belongs to Bk iff aij + a−j,−i = 0, which means that A is skew-symmetric w.r.t. its secondary
diagonal.

Let Fij = Eij − E−j,−i . It is easily seen that

[Fij , Fpq] = δjpFiq − δiqFpj + δ−piF−qj + δ−jqFp,−i .

The algebra Bk is spanned by elements Fij with i > −j . Evidently, Fi,−i = 0 and
F−j,−i = −Fij .

Elements Fii, i = 1, . . . , k form a base of the Cartan subalgebra hk ⊂ Bk , which consists
of elements of the form

X = diag(−xk,−xk−1, . . . ,−x1, 0, x1, . . . , xk−1, xk).

Let εi ∈ h∗
k such that εi(X) = xi , i.e. εi is a base in h∗

k dual to Fi,i , i = 1, . . . , k. Define a
symmetric nondegenerate bilinear form 〈·, ·〉 on Bk as

〈A,B〉 = 1
2 tr AB, (A.2)

which is proportional to the Killing form. Clearly,

〈Fij , Fqp〉 = δipδjq, i > −j, q > −p.

In particular, Fii, i = 1, . . . , k, is an orthogonal base in hk .
The form 〈·, ·〉|hk

generates the isomorphism � : hk → h∗
k by the formula �(X) = 〈X, ·〉.

Specifically, �(Fi,i) = εi and εi, i = 1, . . . , k is an orthonormal base in h∗
k w.r.t. the form

〈f1, f2〉∗ := 〈�−1(f1), �
−1(f2)〉, f1, f2 ∈ h∗

k.

Using this notation one can describe the standard form of the root system for Bk in the
following way. Let

�Bk
:= (±εi,±εi ± εj | i �= j, i, j = 1, . . . , k)

be a root system in Bk ,

�+
Bk

:= (εi, εi + εj , εi − εj | i > j, i, j = 1, . . . , k)
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be a system of positive roots and

�Bk
:= (α1 = ε1, αi = εi − εi−1 | i = 2, . . . , k)

be a system of simple roots, corresponding to the inverse lexicographic order. A subalgebra
Bi ⊂ Bk, i < k, corresponds to root systems �Bi

, �+
Bi

and �Bi
.

Let Lα be a root subspace in Bk , corresponding to a root α ∈ �Bk
. Then,

L−εi
= span(F0i ), Lεi

= span(Fi0), Lεi−εj
= span(Fij ),

Lεi+εj
= span(Fi,−j ), L−εi−εj

= span(F−ij ), i, j = 1, . . . , k.
(A.3)

Fundamental weights for Bk are

λ1 = 1

2

k∑
j=1

εj , λi =
k∑

j=i

εj , i = 2, . . . , k.

Let

λ =
k∑

j=1

λjλj , λj ∈ Z+ := (0) ∪ N

be a dominant weight and V (λ) be an irreducible finite-dimensional Bk-module with the
highest weight λ. All finite-dimensional irreducible representations of Bk are of this form,
modules V (λ) with different λ are not isomorphic to each other and V (λ) corresponds to a
(single-valued) representation of the group SO(2k + 1) iff λ1 is even. The dominant weight λ

can be written in the form

λ =
k∑

i=1

miεi, mk � mk−1 � · · · � m1 � 0, (A.4)

where either all mi ∈ Z+ or all mi ∈ Z+ + 1
2 . Even values of λ1 corresponds to mi ∈ Z+. Let

δ be the sum of fundamental weights. Then it holds

δ =
k∑

i=1

λi = 1

2

k∑
α∈�+

Bk

α =
k∑

i=1

(
i − 1

2

)
εi . (A.5)

The universal Casimir operator C ∈ U(Bk) is

C =
k∑

i=1

(
F 2

ii + {Fi0, F0i}
)

+
∑

i>j>0

({Fij , Fji} + {Fi,−j , F−ji}). (A.6)

The following formulae are valid for any semisimple Lie algebra:

C|V (λ) = (〈δ + λ, δ + λ〉 − 〈δ, δ〉) id, (A.7)

dim V (λ) =
∏
α�0

〈λ + δ, α〉
/∏

α�0

〈δ, α〉, (A.8)

where α � 0 means a positive root.
For any semisimple Lie algebra g and its Cartan subalgebra h, the module V (λ) can be

decomposed into the finite direct sum of weight subspaces

V (λ) =
⊕

µ

Vµ(λ), µ ∈ h∗,

where ∀v ∈ Vµ(λ),∀h ∈ h, it holds h(v) = µ(h)v and the sum is over weights of the form

λ −
∑
α�0

iαα, iα ∈ Z+.

Besides, for any root α of g one has

ξα : Vµ(λ) → Vµ+α(λ), ξα ∈ Lα. (A.9)
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A.2. Lie algebra Dk

The Lie algebra Dk is the subalgebra of Bk , consisting of matrices whose column and rows
with the index 0 vanish. We shall discard these null row and column and shall enumerate
other rows and columns of A ∈ Dk by the indices −k, . . . ,−1, 1, . . . , k as before. The Cartan
subalgebra hk ⊂ Dk is the same as in the Bk-case. Describe the Dk-case briefly, emphasizing
differences from the Bk-case.

Now one has

�Dk
:= (±εi ± εj |i �= j, i, j = 1, . . . , k),

�+
Dk

:= (εi + εj , εi − εj |i > j, i, j = 1, . . . , k),

�Dk
:= (α1 = ε1 + ε2, αi = εi − εi−1|i = 2, . . . , k).

The root subspaces L±εi±εj
are the same as in Bk-case.

Fundamental weights are

λ1 = 1

2

k∑
j=1

εj , λ2 = −1

2
ε1 +

1

2

k∑
j=2

εj , λi =
k∑

j=i

εj , i = 3, . . . , k.

The sum of fundamental weights is

δ =
k∑

i=1

λi = 1

2

k∑
α∈�+

Dk

α =
k∑

i=2

(i − 1)εi .

A dominant weight

λ =
k∑

j=1

λjλj , λ
j ∈ Z+ := (0) ∪ N

now has the form

λ =
k∑

i=1

miεi, mk � mk−1 � · · · � m2 � |m1|, (A.10)

where either m1 ∈ Z,mi ∈ Z+, i � 2 or m1 ∈ Z + 1
2 ,mi ∈ Z+ + 1

2 , i � 2. Again Dk-modules
with integer mj, j = 1, . . . , k, correspond to (single-valued) representations of the group
SO(2k).

The universal Casimir operator C ∈ U(Dk) is

C =
k∑

i=1

F 2
ii +

∑
i>j>0

({Fij , Fji} + {Fi,−j , F−ji}). (A.11)

A.3. Restrictions of Bk- and Dk-representations

The following results were found in [49] (see also [50]).
Let VBk

(λ) be a simple Bk-module with a highest weight (A.4) and VDk
(λ) be a simple

Dk-module with a highest weight

λ′ =
k∑

i=1

m′
iεi , m′

k � m′
k−1 � · · · � m′

2 � |m′
1|.
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Proposition A.1. The restriction VBk
(λ)|Dk

of the irreducible Bk-representation onto any
subalgebra Dk ⊂ Bk expands as follows:

VBk
(λ)|Dk

=
⊕

λ′
VDk

(λ′),

where the summation is over all λ′ such that

mk � m′
k � mk−1 � · · · � m′

2 � m1 � m′
1 � −m1

and all m′
j are integer or half integer simultaneously with mj .

Let VBk−1(λ
′) be a simple Bk−1-module with a highest weight

λ′ =
k−1∑
i=1

m′
iεi , m′

k−1 � m′
k−2 � · · · � m′

2 � m′
1 � 0.

Proposition A.2. The restriction VDk
(λ)|Bk−1 of the irreducible Dk-representation onto any

subalgebra Bk−1 ⊂ Dk expands as follows:

VDk
(λ)|Bk−1 =

⊕
λ′

VBk−1(λ
′),

where the summation is over all λ′ such that

mk � m′
k−1 � mk−1 � · · · � m2 � m′

1 � |m1|
and all m′

j are integer or half integer simultaneously with mj .

Appendix B. Self-adjointness of Schrödinger operators on Riemannian spaces

Here, we shall formulate two results concerning the self-adjointness of Schrödinger operators
on Riemannian spaces, which is used in section 6.

The first theorem is a result from [51], restricted onto the scalar case.

Theorem B.1. Let M be a Riemannian manifold of a bounded geometry, dim M = �, and
µ be the measure on M generated by its metric. Also suppose that the potential V can be
represented in the form V = V1 + V2, where real-valued functions V1, V2 are as follows:
0 � V1 ∈ L1

loc(M,µ), 0 � V2 ∈ Lp(M,µ) for p = �/2 if � � 3, for p > 1 if � = 2, and for
p = 1 if � = 1.

Then the operator HV = −	 +V is self-adjoint with the domain

Dom(HV ) =
(

u ∈ W 1,2(M,µ)|
∫

M

V1|u|2 dµ < +∞,HV u ∈ L2(M,µ)

)
, (B.1)

where HV u is understood in the sense of distributions. Here, W 1,2(M,µ) is the Sobolev space,
consisting of functions on M that are in L2(M,µ) with their first derivatives.

Also V u ∈ L1
loc(M,µ) for u ∈ Dom(HV ).

The definition of a Riemannian manifold of a bounded geometry can be found in [52].
Note that compact and homogeneous Riemannian manifold is always of a bounded geometry.

If the potential V is not in L1
loc(M

n,µ) then theorem B.1 is not applicable. If instead V is
bounded from below, one can try to restrict the Schrödinger operator onto some submanifold
M ′ of M� such that V |M ′ ∈ L1

loc(M
′, µ) and construct the Friedrichs self-adjoint extension

[53] of −	 +V from the initial domain C∞
c (M ′). This procedure is physically motivated for

instance in the case when V → +∞ near the boundary of M ′ and therefore wave functions
should vanish near this boundary.
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Let us turn to the accurate mathematical description. Let M ′ be an open connected
submanifold of a Riemannian space M� of dimension � with a metric g and an induced measure
µ. We do not suppose that M ′ is complete w.r.t. the Riemannian structure induced by the
Riemannian structure on M�. Let V � C ∈ R be a real-valued function from L1

loc(M
′, µ) and

H ′ = −	 +V be a Schrödinger operator with the domain C∞
c (M ′), consisting of all infinitely

smooth complex-valued functions in M ′ with compact supports. Not losing generality we
suppose that C = 1. Let HF � id be the abstract Friedrichs extension of H ′ [53]. We need a
precise description of Dom(HF ).

The operator H ′ generates sesquilinear nonnegative form qH ′ by the equality

qH ′(ϕ, ψ) =
∫

M ′
(H ′ϕ)ψ dµ

with the domain C∞
c (M ′). Evidently, its closure is

qHF
(ϕ,ψ) =

∫
M ′

(g(∇ϕ̄,∇ψ) + V ϕ̄ψ) dµ (B.2)

with Dom(qHF
) ⊂ L2(M ′, µ) being a closure of C∞

c (M ′) w.r.t. the inner product (B.2), where
∇ is the gradient operator given in local coordinates by the equality

∇ψ = gjk ∂ψ

∂xk

∂

∂xj
.

The operator HF is defined by the identity∫
M ′

(g(∇ϕ̄,∇ψ) + V ϕ̄ψ) dµ =
∫

M ′
ϕ̄HF ψ dµ, ∀ϕ ∈ Dom

(
qHF

)
, ψ ∈ Dom(HF ).

Thus,

HF ψ = (−	 ψ + V ψ)dist, ψ ∈ Dom(HF ). (B.3)

Theorem B.2. The domain of the operator HF is(
ψ ∈ W 1,2(M ′, µ)

∣∣V ψ ∈ L1
loc(M

′, µ); (−	 ψ + V ψ)dist ∈ L2(M ′, µ)
)

and HF acts by formula (B.3).

The proof of this theorem repeats mutatis mutandis the proof of theorem X.27 from [53]
using the generalization of the Kato inequality for Riemannian spaces [54].

Appendix C. Some Fuchsian differential equations

For convenience of references we collected here basic facts concerning some Fuchsian
differential equations of the second order: the Riemannian equation and the reducibility
of the Heun equation to the hypergeometric one. For details see [55–60].

The linear differential equation

w′′(z) + p1(z)w
′(z) + p2(z)w(z) = 0 (C.1)

on the Riemannian sphere C = P1(C) with meromorphic coefficients pi(z), i = 1, 2, is
Fuchsian [55] iff

pi(z) = qi(z)∏m
k=1(z − zk)i

for some singular points z1, . . . , zm ∈ C and polynomials qi(z) of degrees � i(m−1), qi(zk) �=
0. One can find characteristic exponents ρ(zk) of (C.1) at the point zk by the substitution
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w(z) = (z − zk)
ρ(zk )

into (C.1) and keeping only leading terms as z → zk . This procedure
gives a quadratic equation for ρ(zk). Denote by ρ

(zk)
i , i = 1, 2 its solutions for all points

zk, k = 1, . . . , m. The substitution w(z) = z−ρ(∞)

similarly gives characteristic exponents
ρ

(∞)
1 , . . . , ρ(∞)

n in the infinity.
An information on singular points and corresponding characteristic exponents of

equation (C.1) can be encoded in the Riemann P-symbol P {A; z}, where the first row of a
matrixA consists of singular points and other rows ofA consist of corresponding characteristic
exponents.

Equation (C.1) with three singular points is called the Riemannian equation. Coefficients
of the Riemann equation are completely defined by its characteristic exponents.

There are two types of variable change, transforming any Fuchsian equation into another
Fuchsian equation. The first one is a linear-fractional (Möbius) transformation of the
independent variable:

z → t, z = αt + β

γ t + δ
, αδ − βγ �= 0. (C.2)

By such transformation one can move three singular points into three arbitrary points of C

with the same characteristic exponents.
The second one is a linear transformation of the dependent variable

w(z) → w1(z) =
(

z − z1

z − z2

)q

w(z), (C.3)

which conserves singular points, but changes the characteristic exponents

ρ
(z1)
i → ρ

(z1)
i + q, ρ

(z2)
i → ρ

(z2)
i − q, i = 1, 2.

Using these transformation for the Riemannian equation one can move three singular
points into the triple (0, 1,∞) such that ρ

(0)
1 = ρ

(1)
1 = 0. If one denote ρ

(∞)
1 = α, ρ

(∞)
2 = β

and ρ
(0)
2 = 1 − γ , then the Fuchs identity for this equation gives ρ

(1)
2 = γ − α − β that

corresponds to the hypergeometric or Gauss equation:

z(1 − z)w′′(z) + (γ − (α + β + 1)z)w′(z) − αβw(z) = 0. (C.4)

The P-symbol of equation (C.4) is

P


0 1 ∞
0 0 α ; z

1 − γ γ − α − β β

 .

Many quantum mechanical problems for constant curvature spaces can be reduced to this
equation, while their Euclidean counterparts lead to its limiting cases, obtained from (C.4) by
confluence of singular points (such equations are not Fuchsian).

We shall consider only solutions of (C.4) in the case γ �= −m,m ∈ N. Solutions
of (C.1), corresponding to different characteristic exponents near some singular point, are
called canonical solutions near that point. The series

F(α, β; γ ; z) :=
∞∑

n=0

(α)n(β)n

(γ )n

zn

n!
, |z| < 1 (C.5)

where (a)n := a(a + 1) · · · (a + n − 1), (a)0 := 1, is the canonical solution of (C.4),
corresponding to the characteristic exponent ρ

(0)
1 = 0. The function F(α, β; γ ; z), defined

by (C.5) for |z| < 1, can be analytically continued for z ∈ C\(1, +∞) [56, 57].
Evidently, F(α, β; γ ; z) = F(β, α; γ ; z). If α = −m or β = −m,m = 0, 1, 2, . . . , then

F(α, β; γ ; z) is a polynomial of degree m.
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Another canonical solution of (C.4), corresponding to the characteristic exponent
ρ

(0)
2 = 1 − γ for γ /∈ N, is

z1−γ F (α − γ + 1, β − γ + 1; 2 − γ ; z).

Canonical solutions near the singular point z = 1 are

F(α, β;α + β − γ + 1; 1 − z)

and if γ − α − β /∈ Z also

(1 − z)γ−α−βF (γ − α, γ − β; γ − α − β + 1; 1 − z).

There are expansions of F(α, β; γ ; z) through canonical solutions near the singular points
z = 1 and z = ∞ [57, 58], important for spectral problems. The first one, used in the present
paper, is

F(α, β; γ ; z) = �(γ )�(γ − α − β)

�(γ − α)�(γ − β)
F (α, β;α + β − γ + 1; 1 − z)

+
�(γ )�(α + β − γ )

�(α)�(β)
(1 − z)γ−α−βF (γ − α, γ − β, γ − α − β + 1, 1 − z),

|arg(1 − z)| < π (C.6)

if γ − α − β /∈ Z. Here, � is the gamma-function. It has no zeros and has poles of the first
order at the points z = −m,m = 0, 1, 2, . . . . Its logarithmic derivative ψ�(z) := �′(z)/�(z)

also has poles of the first order at the same points.
For γ −α −β ∈ Z, every summand at the right-hand side of (C.6) is singular and it holds

for m = 0, 1, 2, . . .

F (α, β;α + β + m; z) = �(m)�(α + β + m)

�(α + m)�(β + m)

m−1∑
n=0

(α)n(β)n

n!(1 − m)n
(1 − z)n

− �(α + β + m)

�(α)�(β)
(z − 1)m

∞∑
n=0

(α + m)n(β + m)n

n!(n + m)!
(1 − z)n(ln(1 − z)

−ψ�(n + 1) − ψ�(n + m + 1) + ψ�(α + n + m) + ψ�(β + n + m)), (C.7)

F(α, β;α + β − m; z) = �(m)�(α + β − m)

�(α)�(β)
(1 − z)−m

m−1∑
n=0

(α − m)n(β − m)n

n!(1 − m)n
(1 − z)n

− (−1)m�(α + β − m)

�(α − m)�(β − m)

∞∑
n=0

(α)n(β)n

n!(n + m)!
(1 − z)n

× (ln(1 − z) − ψ�(n + 1) − ψ�(n + m + 1) + ψ�(α + n) + ψ�(β + n)),

|arg(1 − z)| < π, |1 − z| < 1. (C.8)

In the case Re (γ − α − β) < 0, formulae (C.6) – (C.8) imply

lim
z→1

F(α, β; γ ; z)(1 − z)α+β−γ = �(γ )�(α + β − γ )

�(α)�(β)
. (C.9)

The Fuchsian equation (C.1) with four singular points by transformations (C.2) and (C.3)
can be reduced to the Heun equation

w′′(t) +

(
γ

t
+

δ

t − 1
+

ε

t − d

)
w′(t) +

αβt − q

t (t − 1)(t − d)
w(t) = 0, (C.10)
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where 0, 1, d,∞ are its four singular points (d �= 0, 1,∞) and α + β − γ − δ − ε + 1 = 0.
The corresponding P-symbol is

P


0 1 d ∞
0 0 0 α ; t

1 − γ 1 − δ 1 − ε β

 .

Note that the accessory parameter q does not arise in this P-symbol.
The theory of the Heun equation is much less explicit than the theory of the Riemannian

equation. In particular, there are no explicit expressions of canonical solutions near different
singular points through each other. Therefore, there are only approximate methods for solving
spectral problems connected with the Heun equation, using continued fractions (see for
example [59] and references therein).

The substitution z = P(t) for a rational function P transforms equation (C.1) into another
Fuchsian equation with generally a greater number of singular points. Therefore, sometimes
the inverse transformation can decrease the number of singular points of a Fuchsian equation4.

At the present time there is no general theory of such reduction. However in [60] there
were classified all Heun equations (C.10) that can be obtained by a substitution z = P(t)

from the hypergeometric one (C.4). By the inverse transformation, these Heun equations are
reduced to hypergeometric equations.

The first condition for existing such reduction is the position of the point d. Let

(z1, z2, z3, z4)c.r. := (z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

be the cross-ratio of four pairwise distinct points from C. It is well known that a cross-ratio
is invariant under Möbius transformations. The group S4, permuting points z1, z2, z3 and z4,
acts on their cross-ratio. The cross-ratio orbit OS4(s) of s := (z1, z2, z3, z4)c.r. consists of
points s, 1 − s, 1/s, 1/(1 − s), s/(s − 1), (s − 1)/s ∈ C.

In general position this orbit consists of six points, but there are two exceptional cases: the
orbit −1, 1

2 , 2 and the orbit 1
2 ±

√
3

2 i. If (z1, z2, z3, z4)c.r. ∈ (−1, 1
2 , 2
)
, then (z1, z2, z3, z4) is a

harmonic quadruple. If (z1, z2, z3, z4)c.r. = 1
2 ±

√
3

2 i, then (z1, z2, z3, z4) is an equianharmonic
quadruple.

Points of a harmonic quadruple lie on a circle or on a line. By a Möbius transformation
they can be mapped into vertices of a square in C. If (z1, z2, z3,∞) is a harmonic quadruple,
then (z1, z2, z3) are collinear, equally spaced points. If (z1, z2, z3,∞) is an equianharmonic
quadruple, then (z1, z2, z3) are vertices of an equilateral triangle in C.

Theorem C.1 ([60]). All cases, when nontrivial Heun equation (C.10) (i.e., αβ �= 0 or q �= 0)
can be obtained from the hypergeometric one (C.4) by the rational substitution z = P(t), are
as follows:

1. Harmonic case: d ∈ OS4(2). Suppose d = 2,5 then q/(αβ) must be equal 1, and
characteristic exponents of points t = 0 and t = d = 2 must be the same, i.e. γ = ε. The
function P(t) is a degree-2 polynomial and can be chosen as P(t) = t (2−t) = 1−(t−1)2.
It maps t = 0, 2 to z = 0 and t = 1 to z = 1.6

If additionally 1 − δ = 2(1 − γ ), then P(t) can be chosen also as degree-4 polynomial
4
(
t (2 − t) − 1

2

)2
, which maps t = 0, 1, 2 to z = 1.

4 Generally, the inverse transformation does not conserve the Fuchs class of differential equations.
5 If d ∈ OS4 (s), then the quadruple (0, 1, d, ∞) can be mapped into the quadruple (0, 1, s, ∞) by a Möbius
transformation, which also transforms parameters of equation (C.10).
6 This transformation was found already in [61].
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2. d ∈ OS4(4). Suppose d = 4, then q/(αβ) must be equal 1, characteristic exponents of
the point t = 1 must be double those of the point t = d = 4, i.e. 1 − δ = 2(1 − ε),
and t = 0 must have characteristic exponents 0, 1/2, i.e. γ = 1

2 . The function P(t) is a
degree-3 polynomial and can be chosen as (t − 1)2

(
1 − t

4

)
. It maps t = 0 to z = 1 and

t = 1, 4 to z = 0.
3. Equianharmonic case: d ∈ OS4

(
1
2 +

√
3

2 i
)
. Characteristic exponents of points t = 0, 1, d

are the same, i.e. γ = δ = ε. Suppose d = 1
2 +

√
3

2 i, then q/(αβ) must be equal 1
2 +

√
3

6 i.

The function P(t) is a degree-3 polynomial and can be chosen as
(
1 − t

/(
1
2 +

√
3

6 i
))3

. It
maps t = 0, 1, d to z = 1 and t = q/(αβ) to z = 0, thus creating a new singular point.
If additionally γ = δ = ε = 2

3 , then P(t) can be chosen also as degree-6 polynomial

4

(1 − t

1
2 +

√
3

6 i

)3

− 1

2

2

,

which maps t = 0, 1, d, q/(αβ) to z = 1.

4. d ∈ OS4

(
1
2 + 5

√
2

4 i
)
. Suppose d = 1

2 + 5
√

2
4 i, then q/(αβ) must be equal 1

2 +
√

2
4 i,

characteristic exponents of the point t = d must be 0, 1/3, i.e. ε = 2/3, and points
t = 0, 1 must have characteristic exponents 0, 1/2, i.e. γ = δ = 1/2. The function P(t)

is a degree-4 polynomial and can be chosen as(
1 − t

1
2 + 5

√
2

4 i

)(
1 − t

1
2 +

√
2

4 i

)3

.

It maps t = 0, 1 to z = 1 and t = d, q/(αβ) to z = 0.

5. d ∈ OS4

(
1
2 + 11

√
15

90 i
)
. Suppose d = 1

2 + 11
√

15
90 i, then q/(αβ) must be equal 1

2 +
√

15
18 i,

characteristic exponents of the point t = d must be 0, 1/2, i.e. ε = 1/2, and points
t = 0, 1 must have characteristic exponents 0, 1/3, i.e. γ = δ = 2/3. The function P(t)

is a degree-5 polynomial and can be chosen as

−i
2025

√
15

64
t (t − 1)

(
t − 1

2
−

√
15

18
i

)3

.

It maps t = 0, 1, q/(αβ) to z = 0 and t = d to z = 1.

Note that there are three independent parameters in the first case of theorem (C.1) (for
example, α, β, γ ) and all other cases contain only one or two free parameters. It means that
the first case is more rife in applications. In fact, it is the only one which occurs in the present
paper.
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de Gruyter)
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